• 計畫中文名稱	利用有氧及無氧發酵構造修飾 Steviol-16Alpha,17-Epoxide		
• 計畫英文名稱	Use Aerobic and Anaerobic Fermentation for Structural Modification of Steviol-16Alpha,17-Epoxide		
• 系統編號	PC9408-1230	• 研究性質	基礎研究
• 計畫編號	NSC94-2320-B038-030	• 研究方式	學術補助
• 主管機關	行政院國家科學委員會	• 研究期間	9408 ~ 9507
• 執行機構	台北醫學院藥學系		
• 年度	94 年	• 研究經費	859 千元
• 研究領域	薬學		
• 研究人員	林淑娟		
• 中文關鍵字	有氧; 無氧; 發酵; 微生物轉換; 二類; 代謝物		
• 英文關鍵字			
• 中文摘要	生物催化在有機合成上已漸漸成爲一種重要工具,因此微生物轉換技術目前已被用在合成化合物,製備 chiral building 或是修飾具生物活性的天然產物。相當溫和條件,環境安全性,以及於生物催化過程具高的位置及立體選擇性爲其主要的優點。另一方面,藥物代謝爲藥物經由酵素催化生成新物質的過程,除了由肝臟代謝外,有些藥物於胃腸道被吸收前即可能會先由腸內菌改變其結構,接著再進入腸肝循環,因此無氧及有氧之微生物轉換也可被用於預測化合物於哺乳類的代謝途徑,或是建立微生物及哺乳類之間的生化轉換研究。文獻指出 enantiomerically pure vicinal diols 爲合成某些製藥及生物活性分子的有用中間體,當 vicinal diol 經由含有 monooxygenase 及 epoxide hydrolase 的生物系統來產生時,反應會先 epoxidation 碳、碳雙鍵,接著再水解得到」trans dihydroxylation」產物。ent-kaur-13,16α,17-trihydroxy-19-oic acid (2) 屬於二類,具潛在降血醣活性,雖然此化合物可由 steviol (1)經微生物轉換或化學方法得到,然而產率皆極低。爲了得到足夠量的 2 及化學方法不易得到的新類似物,以探討微生物酵素對化合物之反應特性及代謝途徑,進一步研究降血醣活性之作用機轉,故計劃先將 1 與m-chloroper- benzoic acid 進行 epoxidation 反應以得到 steviol-16α,17-epoxide (8),接著利用微生物的酵素系統,分別於有氧及無氧環境下篩選具有代謝 8 能力之菌種,以得到 2 及新的類似物。分離的化合物除了用於探討微生物酵素對化合物之反應特性、代謝途徑及未來進行降血醣作用機轉外,也將尋找其它生物活性,例如抑制 HIV reverse transcriptase 之試驗,作爲新藥研發之參考。		

查無英文摘要