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Abstract

Nitric oxide contributes to osteoblast
metabolism. This project is designed to
determine the role of different types of
caspases in the nitric oxide-induced
osteoblast  apoptosis  using primary
osteoblasts from neonatal rat calvariae as the
experimental model. The first year of this
project determined the role of the
mitochondria-dependent caspase activation
pathway, including apoptotic factors and
caspase-3, in the nitric oxide-induced
osteoblast apoptosis. Exposure of osteoblasts
to sodium nitroprusside, a nitric oxide donor,
significantly increased lactate dehydrogenase
release and decreased cell viability in
concentration- and time-dependent manners.
Sodium nitroprusside concentration- and
time-dependently caused DNA fragmentation
in  osteoblasts. In parallel to sodium
nitroprusside-induced osteoblast apoptosis,
this nitric oxide donor increased the amounts
of intracellular reactive OXygen species.
However, ascorbic acid and N-acetyl cystein
could not block sodium nitroprusside-
induced reactive oxygen species in rat
osteoblasts.  Administration of sodium
nitruprusside ~ significantly reduced the
membrane potential and NADH oxidase
activity  in  osteoblast  mitochondria.
Immunoblotting  analysis revealed that
sodium nitruprusside decreased the levels of
Bcl-2 protein in osteoblasts. The activities of
caspase-3 were time-dependently increased
following sodium nitroprusside treatment.
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Administration of sodium nitroprusside
increased the levels of 17 kD activated
subunits of caspase-3. The present study has
shown that nitric oxide released from sodium
nitroprusside could induce osteoblast insults
and apoptosis, and this might be involved by
modulating intracellular oxidative stress,
mitochondrial functions, anti-apoptotic Bcl-2
protein and caspase-3.
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Introduction

Nitric oxide (NO), one of reactive
oxygen species (ROS), contributes to a
variety of biological activities, including
vaso-regulation,  neuronal  transmission,
immune response, or cell apoptosis
(Moncada et al, 1991; Wink et al., 1998,
Briine et al,, 1999; Chang et al, 2002). For
modulating bone formation and resorption,
NO plays an important role in bone
remodeling (Collin-Osdoby et al., 1995;
Chae et al, 1997). Osteoblasts, which
mediate bone formation in bone metabolism,
can constitutively produce NO (Riancho et al.,
1995; Collin-Osdoby et al., 1995). In
response 1o the stimulation of pro-
inflammatory cytokines, large bodies of NO
will be synthesized in osteoblasts (Riancho et
al,, 1995; Mancini et al., 2000). NO has the
biphasic effects on osteoblasts. As an
effective mediator, the constitutive



expression of NO is involved in the
proliferation and differentiation of human
and rodent osteoblasts (O'Shaughnessy et al.,
2000). As a death effector, the over-produced
NO can cause osteoblast injury or even death
(Armour et al,, 1999; Chen et al., 2002).

Apoptosis, also named programmed cell
death, is not only an evolutionarily conserved
form of physiologic cell death in normal
development and homeostasis but also
contributes to the pathophysiology of
tissue/cell injury (Goyal, 2001; Rathmell and
Thompson, 2002). When associated with
proliferation and differentiation, apoptosis
determines the size of osteoblast population
and is involved in bone remodeling in the
postanal and adult skeleton (Hock et al.,
2001). NO is a critical bioregulator to induce
cell apoptosis (Chung et al., 2001; Chang et
al., 2002). The over production of NO in
osteoblasts responsive to pro-inflammatory
cytokine stimulation would lead to osteoblast
death (Damoulis and Hauschka, 1999; Mogi
et al., 1999). Administration of NO donors
such as sodium nitroprusside (SNP) would
release massive levels of NO and induce
osteoblast apoptosis (Messmer et al., 1996;
Chen et al., 2002).

There are multiple mechanisms
involved in cell apoptosis. An increase in the
levels of reactive oxygen species can enhance
oxidative stress and then induce cell insults
(Shackelford et al., 2000). Administration of
NO donors and peroxynitrite, an oxidative
metabolite of NO and superoxide, would
enhance cellular oxidative stress and promote
cell apoptosis (Wei et al., 2000, Chung et al.,
2001; Del Carlo and Loeser, 2002).
Mitochondria are critical for the maintenance
of cell functions. The disruption of
mitochondrial activity would lead to cell
dysfunction or even death (Yu et al., 2002).
NO has been reported to interfere with
mitochondrial functions through modulating
the membrane potential and to promote the
release of apoptotic factors, including,
including reactive oxygen species and
cytochrome ¢, from this organelle to the
cytoplasm (Hortelano et al., 1999; Umansky
et al,, 2000; Pearce et al., 2001). Bcl-2 is an
anti-apoptotic protein, the decrease in cellular

levels would drive cells undergoing apoptosis
(Srivastava et al., 1999; Briine et al., 1999;
Cheng et al, 2001). Caspases are
constitutively present in cells as nonactive
zymogens and require proteolytic cleavage
into the catalytic active heterodimeter.
Initiator or signaling caspases are activated
by an upstream signal transducing step thus
processing downstream or effector/executor
caspases that in turn are implicated in the
degradation of multiple substrates (Cohen,
1997). However, the roles of cellular
oxidative stress, mitochondrial functions,
Bel-2  and  caspase-3  in NO-induced
osteoblast apoptosis are still unknown. This
study is aimed to investigate if the NO-
induced osteoblast apoptosis is involved by
intracellular  reactive oxygen species,
mitochondrial activities, Bcl-2 protein and
caspasc-3 using neonatal rat calvarial
osteoblasts as the experimental model.

Materials and Methods

Preparation of rat osteoblasts

Primary osteoblasts were prepared from 3-
day-old Wistar rat calvaria according to the
method of Partridge et al. (1981). Osteoblasts
were seeded in Dulbecco’s modified Eagle
medium (Gibco, BRL, Grand Island, NY,
USA) supplemented with 10 % heat-
inactivated fetal bovine serum, L-glutamine,
penicillin (100 1U/ml), and streptomycin (100
pg/ml) in 75-cm’ flasks at 37 °C in a
humidified atmosphere of 5 % CO,.
Osteoblasts were grown to a confluence prior
to the drug treatment. Only the first passage
of rat osteoblasts was used in the present
study.

Drug treatment

Sodium nitroprusside (SNP) purchased from
Sigma Corporation (St. Louis, MQ, USA)
was freshly dissolved in phosphate-based
saline (PBS) buffer (0.14 M NaCl, 2.6 mM
KCl, 8 mM Na;HPOy, 1.5 mM KH,PO,) and
protected from light. The concentration- and
time-dependent effects of SNP on osteoblasts
were determined first.



Quantification of lactate dehydrogenase
The amounts of lactate dehydrogenase
released in the culture medium by osteoblasts
were determined to evaluate the cytotoxicity
of SNP to these cells. Osteoblasts (1 x 10°)
were seeded i 24-well tissue culture plates
(Coming Costar Corporation, Cambridge,
MA, USA). After administration of SNP, the
culture  medium was collected and
centrifuged. The amounts of lactate
dehydrogenase in supernatants were analyzed
using a model 7450 automatic autoanalyzer
system of Hitachi Ltd., Tokyo, Japan.

Assay of the membrane integrity

The integrity of osteoblast membrane was
determined by the trypan blue exclusion
method to evaluate the cytotoxicity of SNP.
Briefly, osteoblasts (2 x 10°) were cultured in
24-well tissue culture plates. After SNP
administration, osteoblasts were trypsinized
using 0.1 % trypsine-EDTA (Gibco, BRL,
Grand Island, NY, USA) and harvested in 1 x
PBS buffer. Following centrifuging and
washing, osteoblasts were suspended in 1 x
PBS buffer and stained with equal volume of
trypan blue dye. The fractions of dead cells
with blue color in osteoblasts were counted
in a reverse-phase microscope.

Analysis of cellular DNA fragmentation
DNA fragmentation in osteoblasts were
quantified by detecting BrdU-labeled
histone-associated DNA fragments in the
cytoplasm of cell lysates according to the
instruction of the cellular DNA fragmentation
ELISA kit  (Bochringer ~ Mannheim,
Indianapolis, IN, USA). Briefly, osteoblasts
(2 x 10°) were sub-cultured in 24-weil tissue
culture plates and labeled with BrdU for over
night. The cells were harvested and
suspended in the culture medium. One
hundred micrometer of cell suspension was
added in each well of 96-well tissue culture
plates. The cells were co-cultured with SNP
for another 8 hours at 37 °C in a humidified
atmosphere of 5 % CO,. The amounts of
BrdU-labeled DNA in the cytoplasm were
quantified by an Anthos 2010 microplate
photometer (Anthos Labtec Instruments
GmbH, Lagerhausstrasse, Wals/Salzburg,

Aus) at a wavelength of 450 nm.

Determination of intracellular reactive
oxygen species

The levels of intracellular reactive
oxygen species were quantified following the
method as described previously (Liu et al.,
2001). Briefly, 5 x 10° osteoblasts were
cultured in 12-well tissue culture plates for
overnight, and then co-treated with SNP and
27, 7’-dichlorofluorescin diacetate, an reactive
oxygen species sensitive dye. After drug
trcatment, osteoblasts were harvested and
suspended in 1 x PBS buffer. The relative
fluorescence intensity in ostcoblasts was
quantified by a flow cytometer (FACS
Calibur, Becton Dickinson, San Joes, CA,
USA).

Quantification of mitochondrial
membrane potential
The membrane potential of

mitochondria in osteoblasts was determined
according to the method of Chen (1988).
Briefly, osteoblasts (5 x 10°) were seeded in
12-well tissue culture plates for overnight
and then treated with SNP for different time
intervals. After administration of SNP,
osteoblasts were harvested and incubated
with 3,3’ -dihexyloxacarbocyanine
(D10Cq(3)), a positively charged dye, at 37
°C for 30 min in a humidified atmosphere of
5 % CO,. After washing and centrifuging, the
cell pellets were suspended with 1 x PBS
buffer. The fluorescent intensities in
osteoblasts were analyzed by a flow
cytometer (FACS Calibur, Becton Dickinson,
San Joes, CA, USA).

Assay of NADH-dependent dehydrogenase
activity

The activity of NADH-dependent
dehydrogenase were determined by the
colorimetric 3-(4,5-dimethylthiazol-2-y1)-2,5-
diphenyltetrazolium bromide assay following
the method of Wu et al. (2003) to evaluate
the effect of SNP on mitochondria. Briefly,
ten thousand macrophages were seeded in
96-well tissue culture clusters for overnight.
After drug treatment, cells were cultured with
a new medium containing 0.5 mg/ml 3-(4,5-



dimethylthiazol-2-y1)-2,5-
diphenyltetrazolium bromide for another
three hours. The blue formazan product in
cells was dissolved in dimethyl sulfoxide and
measured  spectrophotometrically at a
wavelength of 550 nm.

Caspase-3 fluorometric assay

Caspase-3 activity was determined by
fluorometric reaction according to the
standard  protocol in the caspase-3

fluorometric assay kit (R&D Systems, Inc.,
Minneapolis, MN, USA). After SNP
treatment, the cytosolic extracts of
osteoblasts were prepared by lysing the cells
in a buffer containing 1 % Nonidet P-40, 200
mM NaCl,20 mMTris/HC, pH 7.4, 10 pg/ml
leupeptin, 0.27 U/ml aprotinin and 100 uM
PMSF. The cell lysate (100 pg total protein)
was incubated at 37 °C for 3 hours with 50
uM the fluorogenic substrate, DEVD-AFC,
in 200 pl cell-free system buffer (10 mM
Hepes, pH 7.4, 220 mM mannitol, 68 mM
sucrose, 2 mM NaCl, 2.5 mM KH,PO,, 0.5
mM EGTA, 2 mM MgCl; 5 mM pyruvate,
0.1 mM PMSF, and 1mM dithiothreitol). The
release of fluorescent 7-amino-4-
trifluoromethyl coumarin was measured by
LS55 Luminescence Spectrometer (Perkin
Elmer Instrutments, Shelton, CT, USA).

Gel electrophoresis and immunoblotting
analysis

After SNP treatment, osteoblasts were
washed with 1 x PBS buffer, and the cell
lysates were prepared in an ice-cold
radioimmunoprecipitation  assay (RIPA)
buffer (25 mM Tris-HCI pH 7.2, 0.1 % SDS,
1 % Triton X-100, 1 % sodium deoxycholate,
0.15 M NaCl, 1 mM EDTA). To avoid
protein  degradation, the RIPA buffer
contained a mixture of proteinase inhibitors,
including 1 mM phenyl methyl sulfonyl
fluoride, 1 mM sodium orthovanadate and 5
pg/ml leupeptin. Protein concentrations were
quantified by a bicinchonic acid (BCA)
protein assay kit (Pierce, Rockford, IL, USA).
Cytosolic proteins (100 pg per well) were
subjected to Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-

PAGE) and transfer to nitrocellulose
membrane as described elsewhere (Chen et
al., 2000). The membranes were blocked with
5 % non-fat milk at 37 °C for 1 hour.
Immunodetection of Bel-2 and caspase-3 was
carried out using mouse monoclonal antibody
against rat Bel-2 and caspase-3 (Transduction
Laboratories, Lexington, KY, USA). Celtular
B-actin protein was immunodetected by a
mouse monoclonal antibody against mouse
P-actin (Sigma, Saint Louis, MI, USA) as an
internal  standard.  Intensities of the
immunoreactive bands were determined
using an UVIDOCMW Version 99.03 digital
imaging system (Uvtec Limited, Cambridge,
England, UK).

Statistical analysis

The statistical significance of the
difference between control and drug-treated
groups was evaluated by the Student’s -test,
A P-value less than 0.05 was considered as
statistically ~ significant. The statistical
difference between groups was considered
significant when the P value of the Duncan’s
multiple rang test was less than 0.05.

Results

Cytotoxicity of SNP to osteoblasts was
assayed by analyzing the release of lactate
dehydrogenase and the membrane integrity
(Tables 1 and 2). Exposures of osteoblasts to
1.5 and 2 mM SNP for 16 hours resulted in
85 % and 2.5-fold increases of lactate
dehydrogenase in the culture medium,
respectively (Table 1). SNP at 0.5 and 1 mM
did not affect the release of lactate
dehydrogenase. Analysis of trypan blue
exclusion revealed that administration of
osteoblasts with 1.5 and 2 mM SNP for 16
hours decreased 38 % and 62 % cell viability,
respectively  (Table 1). Exposure of
osteoblasts to 0.5 and 1 mM SNP did not
influence cell viability.

Administration of 2 mM SNP for 8§ and
16 hours significantly increased 65 % and
2.5-fold the release of lactate dehydrogenase
from osteoblasts to the culture medium,
respectively (Table 2). The level of lactate



dehydrogenase in culture medium was not
affected by SNP treatment for 4 hours.
Exposure of osteoblasts to 2 mM SNP for 8
and 16 hours significantly reduced 40 % and
55 % cell viability, respectively (Table 2).
After administration of SNP for 4 hours, the
cell viability was not changed.

DNA damage was quantified to
determine  if  ostcoblastss  underwent
apoptosis following SNP treatment. Exposure
of osteoblasts to 1.5 and 2 mM SNP for 16
hours significantly increased 92 % and 3.5-
fold DNA fragmentation (Fig. 1). SNP at 0.5
and 1 mM did not cause DNA damage. When
exposed to 2 mM SNP for 8 and 16 hours,
the ratio of DNA fragmentation in osteoblasts
was significantly augmented by 65 % and
3.5-fold. Exposure of osteoblasts to 2 mM
SNP for 4 hours did not lead to DNA
fragmentation.

After SNP treatment, the levels of
intracellular reactive oxygen species were
analyzed to determine if SNP induced
intracellular reactive oxygen species in
osteoblasts (Fig. 2). Exposure of osteoblasts
to SNP for 1 hour significantly increased 76
% intracellular reactive oxygen species (Fig.
2). After administration of SNP for 2 and 4
hours, this NO donor resulted in 3.2- and 5.3-
fold increases in the levels of intracellular
reactive oxygen species.

Ascorbic acid and N-acetyl] cystein, two
typical antioxidants, were used to block SNP-
induced intracellular reactive oxygen species
(Table 3). Exposure of osteoblasts to SNP
significantly  increased  about  5-fold
intracellular reactive oxygen species. The
basal levels of intracellular reactive oxygen
species in osteoblasts exposed to ascorbic
acid and N-acetyl cystein were decreased by
54 % and 63 %, respectively. However,
combined treatment of SNP with ascorbic
acid or N-acetyl cystein could not abolish
SNP-induced intracellular reactive oxygen
species (Table 3).

The membrane potential and activity of
NADH-dependent  dehydrogenase  were
determined to evaluate the effect of SNP on
mitochondrial function (Fig 3). Exposure of
osteoblasts to SNP for ! hour did not affect
the membrane potential of mitochondria (Fig.

3). When the administered time intervals
achieved 2 and 4 hours, SNP significantly
resulted in 16 % and 36 % decreases in the

membrane  potential of  osteoblast
mitochondria. The activities of NADH-
dependent dechydrogenase in osteoblast

mitochondria exposed to 2 mM SNP for 8
and 16 hours were decreased by 18 % and 58
%, respectively. However, administration of
osteoblasts with 2 mM SNP for 4 hours did
not affect NADH-dependent dehydrogenase
activity,

Bel-2  protein  in  osteoblasts was
immunodetected and quantified to determine
the effect of SNP on theis anti-apoptotic
protein (Fig 4). In untreated osteoblasts, Bcl-
2 protein was detectable (Fig. 4A, top panel,
lane 1). After SNP administration, the levels
of Bcl-2 protein were significantly decreased
(lane 2). The expression of B-actin was used
as the internal standard (Fig. 4A, bottom
panel). Intensities of the immunoreactive
protein bands were analyzed using a digital
imaging system (Fig. 4B). SNP significantly
reduced 82 % Bcl-2 protein levels in
osteoblasts,

Following the increase in intracellular
calcium concentration, administration of
osteoblasts with SNP for 1, 3, 6 and 12 hours
caused significant increases in caspase-3
activity and protein, respectively (Figs. 5 and
6).
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Table 1 Concentration-dependent effects on the cytotoxicity of
sodium nitroprusside to rat osteoblasts ) ‘ Time, h
Lactate dehydrogenase Cell viability Fig. 1 Time-dependent effects of SNP on
SNP, mM (U/L) (celinumber x 10°)  DNA fragmentation of rat osteoblasts.
0 41+11 188 + 44
0.5 38+ 10 187 + 38
1 35+8 179 =45
1.5 76+ 8% 116+ 18*
2 104 + 13* 72£21*

Rat osteoblasts were exposed to 0.5, 1, 1.5 and 2 mM sodium
nitroprusside (SNP) for 16 hours. The amounts of lactate
dehydrogenase released from osteoblasts to culture medium were
analyzed by an autoanalyzer as described in Materials and
method. Cell viability was determined by the trypan blue
exclusion method. Each value was expressed as Mean + SEM for
n = 12. *Values were considered to have statistical difference
from the respective control, P < 0.05.

Intraceliular ROS
(folds of control)

Time, h
Table 2 Time-dependent effects on the cytotoxicity of sodium Fig. 2 Time-dependent effects of SNP on
nitroprusside to rat osteoblasts intracellular reactive oxygen species of rat
Lactate dehydrogenase Cell viability osteoblasts.
Time, h (U/L) {cell number x 10%)
0 3710 179 £ 31
4 30+6 167 + 58
8 61+ 9* 107 + 30* 100

16 93+11* 31+ 19*

Rat osteablasts were exposed to 2 mM sodium nitroprusside for
0, 4, 8 and 16 hours. The amounts of lactate dehydrogenase
released from osteoblasts to culture medium were analyzed by
an autoanalyzer as described in Materials and method. Cell
viability was determined by the trypan blue exclusion method.
Each value was expressed as Mean + SEM for n = 12. *Values
were considered to have statistical difference from the
respective control, P < (.05,
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Mitochandrial membrane potential

Time, h

Table 3 Effects of ascorbic acid and N-acetyl cysteine on sodium
nitroprusside-induced intracellular reactive oxygen species in rat Fig. 3 Time-dependent effects of SNP on

osteoblasts : mitochondrial membrane potential of rat
iROS, folds of control osteoblasts.
Control i
SNP 4.68 £0.36%
AA 0.46 + 0.02*
AA + SNP 583+ 0.77*
NAC 0.37 £ 0.03*
NAC + SNP 6.13 = 1.02*

Rat osteoblasts were exposed to 2 mM sodium nitroprusside
(SNP), 30 uM ascorbic acid (AA), 1 mM N-acetyl cysteine (NAC),
a combination of AA and SNP and a combination of NAC and SNP
for 4 hours. The amounts of intracellular reactive oXygen species
{IROS) were quantified by the flow cytometric method. Each value
was expressed as Mean + SEM for n = 6. *Values were considered
to have statistical difference from the respective control, P < (0.05.9
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