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Abstract

Dipyridamole is a nucleoside transport inhibitor and a non-selective phosphodiesterase
inhibitor that increases intracellular levels of cAMP and cGMP through phosphodiesterase
inhibition. Many phosphodiesterases have been demonstrated to have anti-inflammatory
effectsin various experimental systems. This study investigates whether dipyridamole inhibits
LPS-induced inducible nitric oxide (iINOS) and cyclooxygenase (COX-2) expression in RAW
264.7 macrophages. Treatment of cells with dipyridamole blocked LPS-induced iNOS and
COX-2 expression. Dipyridamole inhibited NF-xB activation as demonstrated by inhibition
of 1xB phosphorylation, 1xB degradation, p65 transloction from the cytosol to the nucleus and
transcription of the reporter gene. Dipyridamole aso inhibited LPS-stimulated p38
mitogen-activated protein kinase (p38 MAPK) and IKK-B activities in RAW 264.7 cells. A
p38 MAPK inhibitor, SB 203580, inhibited LPS-stimulated iNOS expression and IKK-3
activation suggesting that LPS may activate the NF-xB signaling pathway via upstream p38
MAPK activation. Furthermore, dipyridamole stimulated transient activation of
mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 MAPK
function. Treatment of cells with 8-Br cGMP, or 8-Br cAMP did not increase the
phosphorylation of MKP-1, suggesting the MKP-1 phosphorylation is independent of CAMP
or cGMP accumulation. Taken together, these data suggest that dipyridamole exerts its
anti-inflammatory effect via activation of MKP-1, which dephosphorylates and inactivates
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p38 MAPK. Inactivation of p38 MAPK in turn inhibits IKK-f3 activation and subsequently the
NF-xB signaling pathway that mediates LPS-induced iNOS and COX-2 expression in RAW
264.7 cells.Keywords: Dipyridamole, NOS, LPS, NF-kappa B, RAW 264.7 macrophages.
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3.1. LPSinduces iNOS and COX-2 expression in RAW 264.7 cell .
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3.2. Dipyridamole inhibits LPS-induced iNOS and COX-2 expression and nitrite
accumulation in RAW 264.7 cells.
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3.3. LPSinduced iNOS and COX-2 expression is mediated through p38MAPK and NFkB
pathways.
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3.4. Effect of LPS on IKK phosphorylation, IkB phosphorylation, kB degradation and NF-«B
translocation in RAW 264.7 cells.
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3.5. Dipyridamole inhibits LPS-induced IKK activity, IkB phosphorylation, 1kB degradation,
NF-xB translocation and NF-«B responsive luciferase reporter gene expression in RAW 264.7
cells.
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3.6. Effect of SB203580 on LPS-stimulated on IKK- 3 activity in RAW 264.7 cells.
Dipyridamole inhibits LPS-activated p38 MAPK in RAW 264.7 cells.

3 i
o S v -

LPS1 ugml - LPS1 ug/ml
SB 203580 (uM) - - 03 3 DP (uM) - - 0-3

3.7. Dipyridamole increases MKP-1 phosphorylation in RAW 264.7 cells.
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3.8. MKP-1 may dephosphorylate and inactivate p38 MAPK activity
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Dipyridamole is a non-selective phosphodiesterase inhibitor, which has been shown to
improve proteinurea in membranous glomerulonephritis, mesangia 1gA glomerulonephritis,
and segmentary and focal hyalinosis glomerulonephritis (Harmankaya et a., 2001).
Inhibition of proteinuria in glomerulonephritis has been attributed to platelet response
(Camaraet d., 1991). However, there is no consistent evidence supporting dipyridamole as
an effective antithrombotic agent in cardiovascular and renal diseases. Because many PDE
inhibitors suppress the LPS-stimulated cytokine production (Yoshigawaet a., 1999), we have
sought to resolve the question of whether dipyridamole exerts an anti-inflammatory effect.
LPS is abacterial endotoxin, which induces the expression of a number of proteins associated
with inflammation. LPS-induced iNOS and COX-2 expression are key mediators in
inflammatory responses. In the present study, we investigate whether dipyridamole has an
effect on LPS-induced iNOS and COX-2 expression. We present evidences showing that
dipyridamole inhibits iINOS and COX-2 expression in LPS-stimulated RAW 264.7 cells.
Because inhibition of p38 MAPK by a pharmacological specific inhibitor, SB203580, is
enough to suppress the IKK-B activity, these data suggest that dipyridamole inhibits p38
MAPK activation leading to an inhibition of IKK-B and the NF-«xB signaling pathway, and
subsequently suppresses LPS-induced iNOS and COX-2 expression in RAW 264.7
macrophages. In addition to these novel findings, we demonstrated that dipyridamole
stimulates MKP-1 activation, which lead to p38 MAPK and IKK-f inactivation and NF-xB
specific transcription.

Our data agree with many other reports showing phosphodiesterase inhibitors are
immunoregulators and can be used as an anti-inflammatory agent (Bielekova et al., 2000;
Burnouf et al., 2002). Dipyridamole exerts beneficial effects on glomerulonephritis (Camara
etal., 1991) and blocks the lipopolysaccharide (L PS)-induced increase in monocyte-associated
tissue factor activity (Brozna et a., 1990). LPS-activation of p38BMAPK and NF-kB signa
transduction pathways may contribute to inflammatory responses and disease progression. In
this study, we demonstrated that dipyridamole activates MKP-1, which in turn inactivates
these proinflammatory signaling pathways.  Our results support the notion, that
dipyridamole can serve as a anti-inflammatory agent as well.

The results of our inhibitor studies suggest that the LPS-induced iNOS and COX-2
expressions is a consequence of the activation of p38 MAPK, IKK, and NF-kB in RAW 264.7
cells. Activation of the transcription factor, NF-xB, is responsible for the atered
transcription of iINOS and COX-2 in macrophages and many other cell types (Huttunen et al.,
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1999; Mohamed et a., 1999; Li et a., 2000). Consistently, we have found that NF-xB
activation plays an important role in LPS-induced iNOS expression. This notion is supported
by the data herein: 1) Pretreatment of cells with PDTC inhibited LPS-mediated iNOS
induction; 2) Treatment of RAW cells with LPS increased p65 NF-xB transocation from the
cytosol to the nucleus; 3) LPS treatment phosphorylated and degraded IxB in the cytosol; and
4) Treatment of RAW cells with LPS enhanced NF-kB-specific transcription as demonstrated
by the expression of reporter gene, luciferase activity.

NF-xkB can be activated in response to a broad range of stimuli and conditions,
including interleukin-1 (IL-1) and tumor necrosis factor-o (TNF-a) (Bowie and O’Neill,
2000). LPS triggers a signaling pathway resulting in the production of inflammatory
cytokines, which include TNF o and IL-1. Thus, LPS activation of NF-xB may well be an
indirect effect due to the release of cytokines. Indeed, LPS induces TNF o secretion through
nuclear factor kappa B in human vascular muscle cells.

The intracellular signaling mechanisms by which LPS induce NF-xB remain to be
determined. LPS may activate protein tyrosine kinase, p21 Ras, protein kinase C-pll (PKC
BIl), or p42/44AMAPK. In agreement, we previously found that protein tyrosine kinase, p21
Ras, and p38 MAPK are involved in LPS-induced iNOS expression in A549 cells (Lin et al.,
2001). LPS stimulation of human monocytes activates several intracellular signaling
pathways that include the p38 mitogen-activated protein kinase (MAPK) pathway (Guha and
Mackman, 2001). Lipoteichoic acid activation of NF-kB is mediated through protein tyrosine
kinase (Kengatharan al., 1996). Activation of NF-xB in human monocytes involves PKC
and PI-3K (D'Addario et a., 1999; Diaz-Guerra et a., 1999). Thus, LPS may activate
tyrosine kinase, PI-3K, PKC, and p38 MAPK, which in turn activate IxB kinase (IKK),
resulting in NF-kappaB (p50/p65) translocation and the induction of many genes encoding
inflammatory mediators including iNOS. However, given the addition of MEK-specific
inhibitor, PD 98059, fails to normalize the LPS-induced iNOS expression, and the facts that
many other pathways could contribute to the activation of NF-kB, which may play arolein
the NF-xB dependent induction of iNOS expression. It is possible that other signaling
pathways other than those highlighted in the present study may also contribute to the
activation of LPSin RAW264.7 cells.

In conclusion, our results suggest that dipyridamole may have anti-inflammatory effects.
Our results clearly demonstrated that dipyridamole inhibits L PS-induced inflammatory
mediator expression in RAW 264.7 macrophages through p38 MAPK, IKK, and NF-xB
dependent mechanisms.  Whether dipyridamol e exerts these effectsin clinical treatment
warrant further investigation.
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