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| nvestigate different anti-monocyte/macrophage agents on matrix
metalloproteinase activation and comparison with protective effectson
LTA- and L PS-induced multiple organ failure
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Abstract

Matrix Metalloproteinases (MMPs)
are a family could catalyze and degrade
tissue structure maintaining extracellular
matrix protein (ECM), including ground
substances and connecting fibers, they are
named matrix metalloproteinase. Thus, it
plays an important role in tissue structure
remodeling, repairing and  destroys.
According to previous experiments, we
found that haloperidol showed obviously
inhibitory effect on MMPs activation. We
observed that haloperidol significantly and
concentration-dependently inhibit MMP-9
activation induced by LPS by zymographic
method. Also, we found that the inhibitory



effect of haloperidol was not due to
impairment of cellular viability by MTT
tests. According to Western blot method, we
found that wvarious stimulator-induced
expression of MMP-9  protein s
concentration-dependent  inhibition by
haloperidol. At the same time, we
investigated the mechanism of action of
haloperidol in various signaling pathways.
We found that haloperidol  could
significantly inhibit the degradation of
inhibitor-kB-o.  (IkB-a) induced by LPS.
Therefore, nuclear factor-kB (NF-kB) may
not translocate for transcription. In summary,
we found that haloperidol have inhibitory
effect on MMP-9 expression, and its main
mechanism of action might through NF-kB
signal pathway on LPS stimulation.
According to the septic injury in vivo studies,
we found the functions of liver and kidney
are graduately decay by LPS or LTA. It will
be interesting to further investigate its
anti-inflammatory therapeutic and septic
profile in vivo.
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Figure 1. Effects of haloperidol on LPSinduced enzymatic activity of matrix
metalloproteinase-9 (MMP-9) in THP-1 cells. THP-1 cells (1x10° cells/ml) were dispensed on
24-well plates and treated with LPS (50 ng/ml) for 24 hours as indicated. Cells were treated
with the indicated concentrations of haloperidol (lane 3, 0.5 uM; land 4, 2 uM; lane 5, 10 uM;
land 6, 20 uM) or vehicle (land 2) for 15 minutes before treatment with LPSCell-free
supernatants were then assayed for MMP-9 activity by gelatin zymography, as detailed in
“Methods” (land 1, control). Percent inhibition is presented as mean = S.E.M. of three

independent experiments.
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Figure 2. Cytotoxicity of haloperidol on THP-1 cells. THP-1 cells were treated with
different concentration of haloperidol (10-100 uM) and incubated for 24 hrs. Cell viability
was measured by a colorimetric assay at 550 nm based on the ability of mitochondria to
reduced the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide
(MTT) in viable cells. Percentage of viability is presented as mean + S.E.M. of three to
eight independent experiments. * P < 0.05; ** P < 0.01; *** P < 0.001 as compared with

the resting.
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Figure 3. Effect of haloperidol on LPS-induced expression of matrix metalloproteinase-9
(MMP-9) from conditioned medium of THP-1 cells. THP-1 cells (1x10° cells/ml) were
dispensed on 6-well plates treated with LPS (50 ng/ml) for 24 hrs as indicated. Cells were
treated with indicated concentration of haloperidol (lane 3, 2 uM lane 4, 10 uM; lane 5, 20
pM) or vehicle (lane 2) for 15 min before treatment with LPS. Then the cell lysates were
obtained and analyzed for MMP-9 protein expression by Western blot (lane 1, control). The
data are representative example of five experiments. " P<0.001 as compared with the

resting; * P < 0.05; ** P < 0.01; *** P < 0.001 as compared with the vehicle.
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Figure 4. Western blot analysis demonstrating the time course on LPS-induced
degradation of immunoreactive IxkB-o in THP-1 cells (1x10° cells/ml). THP-1
cells were dispensed on 6-well plate and treated with LPS (lane 2, 30 min; lane
3, 60 min; lane 4, 90 min; land 5, 120 min) or control (lane 1, 120 min) as

indicated.
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Figure 5. Effect of haloperidol on degradation of immunoreactive IkB-a in THP-1 cells.
THP-1 cells (1x10° cells/ml) were dispensed on 6-well plate and treated with LPS (50
ng/ml) for 90 min as indicated. Cells were treated with haloperidol (lane 3, 2 uM; lane 4,
10 uM; lane 5, 20 uM) or vehicle (lane 2) for 15 min before treatment with LPS. Then
cells were obtained and analyzed for IkB-a protein expression by Western blot (lane 1,
control). The data are representative example of three to three experiments. “** P < 0.001

as compared with the resting; * P < 0.05 as compared with the vehicle.
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Figure 6. Effect of haloperidol on NF-kB activation in THP-1 cells. THP-1 cells (1x10°
cells/ml) were dispensed on 6-well plate and treated with LPS (50 ng/ml) for 100 min as
indicated. Cells were treated with haloperidol (lane 3, 0.5 uM; lane 4, 10 uM) or vehicle
(lane 2) for 15 min before treatment with LPS. Then cellular nuclear extracts were

prepared (8 pg) and analyzed for NF-kB activation by EMSA (lane 2, control).
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Figure 7. Time course of arterial blood pressure change in rats treated with bacterial
components. Depicted are the changes in arterial blood pressure during the experimental
period in LPS (5 mg/kg)-or LTA (10 mg/kg)-treated groups of rats. The results are
representative examples of four similar experiments.
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Figure 8. Time course of effects on sepsis-induced liver dysfunctions by LPS or LTA in rats.
The serum of LTA (®)-or LPS (o)-treated animals were collected at indicated time. The data

are representative example of three to four experiments.
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Figure 9. Time course of effects on sepsis-induced renal dysfunctions by LPS or LTA in rats.
The serum of LTA (e)-or LPS (o)-treated animals were collected at indicated time. The data
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are representative example of three to four experiments.



A. LPS 5 mg/kg LPS 5 mg/kg
IHR 2HR 3HR R 1HR 2HR 3HR

B. LTA 10 mg/kg LTA 10 mg/kg
R IHR 2HR 3HR R IHR 2HR 3HR

Figure 10. Time course of effects on serum-induced gelatinolysis by LPS-or LTA-treated in
rats. The serum of LTA (e)-or LPS (o)-treated animals were collected at indicated time. The

data are representative example of three to four experiments.
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