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IGF-I Plus E2 Induces Proliferation
via Activation of ROS-Dependent
ERKs and JNKs in Human Breast
Carcinoma Cells
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Induction of 17b-estradiol (E2) and insulin-like growth factor-I (IGF-I) has been detected in breast carcinoma, however the interaction
between E2 and IGF-I in the proliferation of breast carcinoma cells is still unclear. In the present study,we found that IGF-I enhances the E2-
induced proliferation in MCF-7 human breast carcinoma cells in accordance with stimulation of colony formation via a soft agar assay.
Activation of insulin receptor substrate-1 (IRS-1) protein and extracellular signal-related kinases (ERKs) and c-Jun N-terminal kinases
(JNKs), but not p38 mitogen-activated protein kinase (MAPK), via phosphorylation induction was detected in MCF-7 cells treated with
IGF-I plus E2 (E2/IGF-I). E2/IGF-I-induced proliferation was blocked by chemical inhibitors of ERKs (PD98059) and JNKs (SP600125). An
increase in the expression of c-Jun proteinwas detected in E2/IGF-I-treatedMCF-7 cells, and thiswas inhibited by PD98059 and SP600125.
Transfection of the dominant negativeMEKK and JNK plasmids significantly reduced E2/IGF-I-induced proliferationwith suppression of c-
Jun protein expression. An increase in peroxide production was detected in E2/IGF-I-treated cells, and N-acetyl-L-cysteine (NAC) and
Tiron (TIR) addition significantly inhibited E2/IGF-I-induced cell proliferation with blocking of the phosphorylation of ERKs and JNKs, and
the expression of c-Jun protein. Additionally, 3-OHflavone, baicalein, and quercetin showed effective inhibitory activities against E2/IGF-I-
induced proliferation through suppressing proliferative events such as phosphorylation of IRS-1, ERKs, and JNKs proteins, and inductionof
c-Jun protein and colony formation. These results indicate that IGF-I interacts with E2 to promote the proliferation of breast carcinoma
cells via ROS-dependentMAPK activation and c-Jun protein expression. The structure-related inhibition of E2/IGF-I-induced proliferative
events by flavonoids is elucidated.
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Abbreviations: E2, 17b-estradiol; IGF-I, insulin-like growth factor-I;
MAPK, mitogen-activated protein kinase; JNK, c-Jun NH2-terminal
kinase; ERK, extracellular signal-regulated protein kinase; ER,
estrogen receptor; IRS-1, insulin receptor substrate-1; NAC, N-
acetyl-L-cysteine; ROS, reactive oxygen species.

*Correspondence to: Yen-Chou Chen, Graduate Institute of
Pharmacognosy, School of Pharmacy, Taipei Medical University, 250
Wu Hsing Street, Taipei, Taiwan.
E-mail: yc3270@tmu.edu.tw

Received 29 September 2006; Accepted 24 January 2007

DOI: 10.1002/jcp.21061
Both estrogen (E2) and insulin-like growth factor-I (IGF-I) are
important mediators of various cellular responses and are
associated with the progression of a number of human cancers,
notably breast cancer. The mechanisms of E2 are believed to
occur through activation of estrogen receptor (ER)
transcriptional activity and potentially through non-genomic
mechanisms by activation of intracellular signaling pathways
(Hall et al., 2001; Keshamouni et al., 2002; Tang et al., 2004). In
addition to E2, binding of IGF-I to the IGF-I receptor (IGF-R)
leads to dimerization of the receptor, activation of its tyrosine
kinase followed by phosphorylation of substrate proteins such
as insulin receptor substrate proteins (IRS-1 through -4) and
Src-homology collagen (SHC). Phosphorylated IRS-1 and SHC
in turn recruit different SH-2-containing proteins to activate
specific intracellular signaling pathways such as the MAPK and
PI3K cascades, both of which are important for IGF-I-induced
responses (Lassarre andRicort, 2003; Kim et al., 2004). Utilizing
ERKO mice demonstrated that ER is necessary for IGF-I
induction of uterine proliferation (Klotz et al., 2002), while
inhibition of IGF-IR with anti-IGF-IR antibodies or antisense
RNA abrogated the effect of E2 on cell growth (Chen et al.,
1996; Dupont et al., 2000). Although a possible linkage between
E2 and IGF-I has been postulated, the molecular mechanism is
still unclear.

Reactive oxygen species (ROS), including hydroxyl radicals
(OH), superoxide anions (O�

2 ), and hydrogen peroxide (H2O2),
are considered to be important in the formation of cancer and
various diseases. Accumulation of excess ROS production and
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oxidative stress resulting in cell death have been associatedwith
several degenerative diseases such as atherosclerosis,
Alzheimer’s disease, and Parkinson’s disease (Guo et al., 2005;
Thiruchelvam et al., 2005; Houstis et al., 2006; Zhu et al., 2006).
Recent evidence indicates that low levels of ROS generated by
growth factors and cytokines can activate redox-sensitive
kinases, leading to gene expressions for various cellular
functions. Low exogenous concentrations of H2O2 stimulated
cell proliferation through activation of PI3K and JNKs in
human hepatoma cells (Liu et al., 2002). Basic fibroblast growth
factor (bFGF) was found to induce c-fos expression via
ROS generation in chondrocytes (Lo and Cruz, 1995).
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Platelet-derived growth factor (PDGF) also induced ROS
production and MAPK activation, accompanied by promotion
of cell proliferation in lens epithelial cells (Chen et al., 2004a).
However, the role of ROS in E2- and IGF-I-induced cell
proliferation is still undefined.

Flavonoids are benzo-g-pyrone derivatives extensively found
in plants, foods, and vegetables, and the average intake through
the diet is about 1000mgdaily. Flavonoids consist of phenolic and
pyrane rings and are divided into six subclasses: flavones,
flavanones, flavonols, flavanonols, isoflavones, and
anthocyanidins. Several beneficial health effects such as
antioxidant, anti-inflammation, and antitumor activities of
flavonoids have been identified (Lin et al., 2003; Chen et al.,
2004b; Nguyen et al., 2004; Shen et al., 2004a), and are attributed
to their capacity to eliminate free radicals (Lozano et al., 2005;
Harris et al., 2006; Lu et al., 2006). Flavonoids such as genistein,
daidzain, and quercetin are known to exhibit estrogenic and
antiestrogenic activities which mimic the effect of estrogen in
physiological actions such as antiosteoporosis, protection against
cardiovascular and neural degenerative diseases (Hintz and Ren,
2004;Wattel et al., 2004; Mahn et al., 2005). In the present study,
we investigated the mechanisms of E2 and IGF-I on the
proliferation and transformation of MCF-7 breast carcinoma
cells. Structure–activity relationships of flavonoids on E2 and
IGF-I-induced proliferation and colony formation are elucidated.

Materials and Methods
Chemicals

All structurally related compounds including flavone, 3-OH flavone,
3-OCH3 flavone, 5-OH flavone, 5-OCH3 flavone, 7-OH flavone,
7-OCH3 flavone, baicalein, baicalin, quercetin, quercitrin, and rutin
were obtained from Sigma Chemical (St. Louis, MO) and dissolved in
DMSO. 17b-Estradiol, IGF-I, and tamoxifen were purchased from
Sigma. ICI182780was purchased fromTocris Cookson (Ellisville, MO).
PD98059 and SP600125 were purchased from Calbiochem (La Jolla,
CA). 20,70-Dichlorodihydrofluorescein diacetate (DCHF-DA) was
obtained from Molecular Probe (Eugene, OR). [Methyl-3H]-thymidine
(25 Ci/mmol) was obtained from Amersham (Buckinghamshire, UK).
Antibodies against ERKs, JNKs, p38, c-Jun, ER and a-tubulin were from
Santa Cruz Biotechnology (Santa Cruz, CA). Phosphospecific ERK,
JNK, p38 and ERa antibodies were from Cell Signaling Technology
(Beverly, MA). Anti-phosphotyrosine antibody (PY20) was obtained
from Transduction Laboratories (Lexington, KY).

Cell culture

The MCF-7 human breast carcinoma cell line was obtained from
American Type Culture Collection (Manassas, VA). Cells were
maintained in modified Eagle’s medium (MEM) supplemented with 5%
heat-inactivated fetal bovine serum and 100 U penicillin–streptomycin
at 378C in a humidified incubator containing 5% CO2. All culture
reagents were purchased from Life Technologies (Gaithersburg, MD).

Cell proliferation assay

MCF-7 cells were plated at a density of 1� 104 cells per 24-well plates.
Cells were grown arrested in MEM supplemented with 5%
dextran-coated charcoal-treated FBS (DCC-FBS; Hyclone) for an
additional 24 h and were then subjected to the indicated treatment for
3 days. Cells were trypsinized and then measured using a Z1 Coulter
particle counter (Beckman Counter, Hialeah, FL).

[3H]-thymidine incorporation assay

DNA synthesis was measured by [3H]-thymidine incorporation. In
brief, 1� 104 cells/well were grown arrested in MEM containing 5%
DCC-FBS for 24 h and then treated with different doses of E2 for a
further 3 days. Cells were incubated and labeled with 1 mCi of
[3H]-thymidine per well for 4 h and then washed three times with
PBS followed by treatment with cold 10% trichloroacetic acid and 1%
SDS/0.015N NaOH for 30 min at 48C to lyse the cells. Cell-bound
radioactivity was quantified in a Beckman LS 7000 liquid scintillation
counter.
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Cellular fractionation

The nucleus and membrane fractions were prepared as described (Ko
et al., 2002) with some modifications. Nuclear fraction was washed
three times in the isotonic buffer (10mMTris–HCl pH 7.4, 0.5% Triton
X-100, 0.25 M sucrose, 10 mM MgCl2, 1 mM PMSF) to discard the
cytoplasmic contamination, and the membrane and nucleus were lysed
in RIPA buffer (150 mMNaCl, 1% TritonX-100, 1 mM sodium fluoride,
1 mM sodium orthovanadate 2 mg/ml leupeptin, 2 mg/ml aprotinin, and
1 mM phenylmethylsulfonyl fluoride). The purity of nuclear fraction
was assessed by detecting the expression of a nuclear protein PARP via
Western blotting.

Western blotting

Cells lysates were prepared by suspending cells in lysis buffer (50 mM
Tris–HCl (pH 7.4), 1% Nonidet P-40, 150 mM NaCl, 1 mM EGTA,
0.025% sodium deoxycholate, 1 mM sodium fluoride, 1 mM sodium
orthovanadate, and 1 mM phenylmethylsulfonyl fluoride), and equal
amounts of protein were prepared and separated on 8% SDS-
polyacrylamide gels, and transferred to Immobilon polyvinylidene
difluoride (PVDF) membranes (Millipore, Bedford, MA). The
membrane was blocked with 1% bovine serum albumin at room
temperature for 1 h and then incubated with specific indicated
antibodies for a further 3 h. Expression of protein was visualized by
incubating with the colorimetric substrates, nitro blue tetrazolium
(NBT) and 5-bromo-4-chloro-3-indolyl-phosphate (BCIP).

Transient cell transfections

The dominant-negative expression vectors of MEKK and JNK, and a
control vector (pcDNA3) were transfected into MCF-7 cells using
TransfastTM transfection reagent (Promega,Madison,WI) for 6 h. After
transfection, cells were serum-starved for a further 24 h and stimulated
with E2/IGF-I, and then cells were lysed for analysis.

Measurement of ROS production

Intracellular ROS production was monitored by flow cytometry using
an oxidant-sensitive DCHF-DA probe. This dye is a stable compound
that rapidly diffuses into cells and is hydrolyzed by intracellular esterase
to yield DCHF, which is trapped within cells. Hydrogen peroxide and
low-molecular-weight peroxide produced by cells oxidize DCHF to
the highly fluorescent compound, 2’,7’-dichlorofluorescein (DCF).
Thus, the fluorescence intensity is proportional to the amount of
peroxide produced by cells. In the present study, MCF-7 cells were
incubated with DCHF-DA (100mM) for 10 min in the dark followed by
E2/IGF-I treatment in the presence or absence of NAC for 30 min.
After incubation, cells were resuspended in ice-cold PBS and detected
using a 525-nm (FL1-H) band-pass filter by FACScan flow cytometry
(Becton Dickenson, San Jose, CA).

Soft agar assay

Cells were plated in 1 ml MEM containing 0.35% agarose and 5%
DCC-FBS, and then overlaid with 1 ml of 0.7% agarose. Cultures were
maintained for 3weeks and refreshedwithMEMsupplementedwith 5%
DCC-FBS and subjected to the indicated treatment twice per week.
Colonies were observed and photographed using a light microscope,
and the number of colonies in each well was measured. Each value is
derived from three independent experiments, and results are
expressed as the mean� SE.

Statistical analyses

Values are expressed as the mean� SE. The significance of the
difference from the respective controls for each experimental test
condition was assayed using Student’s t-test for each paired
experiment. A P value of<0.01 or <0.05 was regarded as indicating a
significant difference. The measurements are derived from three
independent MCF-7 cultures, and there are three replicate wells in
each time.

Results
IGF-I enhances E2-induced proliferation and colony
formation in MCF-7 cells

Human MCF-7 breast carcinoma cells have been shown to
express estrogen receptors (ERs). In the present study, the
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addition of E2 significantly induced cell proliferation
characterized by increasing cells number and [3H]-thymidine
intensity in DNA, and this indicates that E2 at a dose of 10 nM
expresses the optimal proliferative effect for study
(Fig. 1A and B). Inhibition of E2-induced proliferation by the ER
antagonists, tamoxifen (Tam) and ICI182780 (ICI), was
detected, and this suggests that E2-induced proliferation
occurs through activation of ERs in MCF-7 cells. Interestingly,
incubation of MCF-7 cells with IGF-I (10 ng/ml) enhanced the
proliferative effect of E2 in MCF-7 cells (Fig. 1D). Data of the
soft agar assay showed that the colony number was increased
in E2- and IGF-I-treated cells, and IGF-I plus E2 (E2/IGF-I)
significantly stimulated colony formation (Fig. 1E). The
number of colonies under different treatments was
quantitated from three independent experiments, and the
number of colonies was significantly increased in
E2/IGF-I -treatedMCF-7 cells (Fig. 1E; lower part).We further
analyze the expression of ERa protein in both membrane and
nucleus in the presence or absence of E2/IGF-I treatment by
Western blotting. As illustrated in Figure 1F, E2/IGF-1 induces
an increase in the phosphorylated ERa protein in both nuclear
and membrane fractions. No change in the expression of total
ERa protein was observed in both fractions with or without
E2/IGF-I stimulation. The expression of PARP protein in the
nuclear, but notmembrane, fractionwas detected to verify the
Fig. 1. IGF-I enhancement of E2-induced cell proliferation and colony fo
concentrations of E2 (0.1, 1, 10, and 100 nM) for 3 days, and the proliferatio
thymidineincorporationassay(B)asdescribedin‘‘MaterialsandMethods’’.
mM)orICI182780(ICI;0.5,1mM), for30minfollowedbytheadditionofE2(1
counteranalysis.D:CellsweretreatedwithE2(1and10nM), IGF-I (10ng/m
Coultercounter.E:MCF-7cellswereunderdifferenttreatmentsin0.35%ag
wereobservedusingalightmicroscopeafter21daysof incubation(leftpart)
(rightpart).Valuesderived fromthree independent experimentswereanal
different fromthecontrolgroup, ##P< 0.01significantlydifferent fromtheE
cells were treated with E2/IGF-I for 15 min, and the expression of total and p
fractions were detected by Western blotting. Data of Western blotting is
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purity of nuclear and membrane fractions. These data
supported the notion that IGF-I and E2 work together to
stimulate the proliferation of breast carcinoma cells, and
activation of non-genomic pathway may be involved.

Activation of ERKs and JNKs in E2/IGF-I-treated
MCF-7 cells

We first examined if activation of MAPKs is involved in
E2/IGF-I-induced proliferation of MCF-7 cells. Data of
Figure 2A show that activation of IRS-1, ERKs, and JNKs was
detected in E2/IGF-I-treated MCF-7 cells via the induction of
protein phosphorylation. No change in the expression of
phosphorylated p38 protein was detected. As the same part of
the experiment, E2 alone slightly induces the expression of
phosphorylated ERKs, but not IRS-1 and JNKs, protein, and
IGF-I addition significantly stimulates the level of
phosphorylated ERKs, IRS-1, and JNKs- protein in the presence
of E2 (Fig. 2B). Incubation ofMCF-7 cells with the ERK inhibitor,
PD98059, or the JNK inhibitor, SP600125, significantly reduced
the proliferation induced by E2/IGF-I (Fig. 2C). Furthermore,
PD98059 and SP600125 addition significantly reduced the
expression of phosphorylated ERKs and JNKs protein,
respectively (Fig. 2D and E). These data indicate that activation
of ERKs and JNKs via stimulation of IRS-1 protein
rmation. MCF-7 cells at 1T 104 cells/well were treated with different
n of cells were determined by a Coulter particle counter (A) and [3H]-
C:CellswerepretreatedwiththeERantagonist, tamoxifen(Tam;0.5,1
0nM)forafurther3days,andcellnumbersweremeasuredbyaCoulter
l),ortheircombinationfor3days,andcellnumbersweremeasuredbya
arosecontaining5%DCC-FBSoverlaidwith0.7%agarose.Cellcolonies
.Thenumberofcolonieswasmeasuredundermicroscopicobservation
yzed, andexpressedas themeanWSE.MP< 0.05,MMP< 0.01significantly
2-treatedor indicatedgroups,asanalyzedbyStudent’s t-test.F:MCF-7
hosphorylated ERa and PARP protein in both nuclear and membrane
a representative of three-independent experiments.



Fig. 2. IGF-I enhancement of E2-induced proliferation via upregulation of IRS-1 and JNK protein phosphorylation. A: MCF-7 cells were serum-
starved for18handtreatedwith IGF-I (10ng/ml)plusE2(10nM)(E2/IGF-I) fordifferenttimeperiods,andcell lysatesweredeterminedbyWestern
blotting using specific antibodies. B: Cells were treated with E2 (10 nM) alone or combined with IGF-I (5, 10, and 20 ng/ml) for 20 min, and the
expression of the indicated protein was detected by Western blotting. C: Cells were treated with E2/IGF-I in the presence or absence of PD (2.5, 5,
and10mM)orSP(2.5,5,and10mM)for3days,andcellnumbersweremeasuredbyCoultercounteranalysis.Valuesderivedfromthreeindependent
experiments were analyzed, and expressed as the meanWSE. ##P < 0.01 significantly different from E2/IGF-I-treated groups, as analyzed by
Student’s t-test. D and E: PD98059 and SP600125 inhibited E2/IGF-I-induced phosphorylation of ERKs, JNKs and cell proliferation. Cells were
pretreated with either PD98059 (2.5, 5, and 10mM) or SP600125 (2.5, 5, and 10mM) for 30 min followed by the addition of E2/IGF-I for 30 min; cell
lysates were determined for phosphorylated and total ERKs (D) and JNKs (E) by Western blotting, respectively. The intensity of each protein was
quantitated by densitometric analysis and expressed as folds of control.
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phosphorylation participates in E2/IGF-I-induced proliferation
in MCF-7 cells.

Induction of c-Jun protein expression is involved in
E2/IGF-I-induced proliferation in MCF-7 cells

Both c-Jun and c-Fos genes have been shown to be active in the
proliferation of cells, thereforewe investigated if induction of c-
Jun and c-Fos gene expressions is involved in E2/IGF-I-induced
MCF-7 proliferation. A time-dependent increase in c-Jun
protein expression was detected in E2/IGF-I-treated MCF-7
cells by Western blotting; however, no change in c-fos protein
was found (Fig. 3A). Additionally, E2 alone slightly induced c-Jun
protein expression which was enhanced by IGF-I addition in a
dose-dependent manner (Fig. 3B). Interestingly, incubation of
cells with the respective ERK and JNK inhibitors, PD98059 and
SP600125, significantly blocked E2/IGF-I-induced c-Jun protein
expression (Fig. 3C). A specific blockage of intracellular ERKs
and JNKs via the respective transfection of the dominant
negative MEKK (DN-MEKK) or JNK (DN-JNK) plasmid
inhibited E2/IGF-I-induced proliferation in accordance with
reducing c-Jun protein expression in MCF-7 cells (Fig. 3D).
Curcumin has been shown to be an inhibitor of c-Jun gene
expression (Han et al., 2002; Park et al., 2005). The addition of
curcumin significantly inhibited E2/IGF-I-induced proliferation
with a concomitant reduction in c-Jun protein expression
(Fig. 3E). These data indicate that induction of c-Jun protein
expression, which is located downstream of ERK and JNK
JOURNAL OF CELLULAR PHYSIOLOGY DOI 10.1002/JCP
activation, is involved in E2/IGF-I-induced proliferation of
MCF-7 cells.

E2/IGF-I induced proliferative events through
stimulation of ROS production

It is important to elucidate if ROS production is involved in
E2/IGF-I-induced proliferation of MCF-7 cells. Data on
DCHF-DA via a flow cytometric analysis showed that an
increase in intracellular peroxide levels was detected in
E2/IGF-I-treated cells, and that this was blocked by the addition
of the antioxidant, N-acetyl-L-cysteine (NAC) (Fig. 4A). In the
same part of the experiment, DCF fluorescent intensity was
induced in E2/IGF-I-treated cells, whichwas attenuated byNAC
(Fig. 4B). Reduction of intracellular peroxide level elicited by
E2/IGF-1 has also been observed in the presence of another
chemical antioxidant Tiron (TIR) treatment (data not shown).
Induction of peroxide production and DCF fluorescent
intensity by H2O2 was described as a positive control.
Additionally, pre-incubation of MCF-7 cells with the
antioxidants, NAC and Tiron (TIR) inhibited E2/IGF-I-induced
IRS-1, ERK, and JNK protein phosphorylation and c-Jun protein
expression (Fig. 4C). Accordingly, suppression of
E2/IGF-I-induced proliferation by NAC and TIR was identified
in MCF-7 cells (Fig. 4D) accompanied by the inhibition of cell
proliferation (Fig. 4C and D). These data support the notion
that stimulation of ROS production may act as an initiator of
E2/IGF-I-induced proliferation.



Fig. 3. IGF-I enhancement of E2-induced c-Jun protein expression and cell proliferation is located downstream of the ERKs and JNKs pathway.
A: MCF-7 cells were treated with E2/IGF-I for different time intervals, and expression of the indicated proteins was detected by Western blotting.
B:CellsweretreatedwithE2(10nM)aloneorcombinedwith IGF-I (5,10,and20ng/ml) for120min,andtheexpressionof the indicatedproteinwas
detected by Western blotting. C: Cells were treated with E2/IGF-I in the presence of PD98059 (2.5, 5, and 10mM) and SP600125 (2.5, 5, and 10mM)
for 120 min, and c-Jun protein in cell lysates was detected by Western blotting. D: Cells were transfected with a dominant negative MEKK
(DNMEKK) or JNK (DNJNK) for 16 h as described in ‘‘Materials and Methods’’, respectively, followed by E2/IGF-I treatment for 120 min. The
expression of the indicated protein was analyzed by Western blotting (upper part), and cell numbers were detected by Coulter counter analysis
(lower part). E: Cells were treated with curcumin (5, 10, and 20mM) for 30 min followed by the addition of E2/IGF-I for a further 120 min, and the
expression of c-Jun protein was detected by Western blotting (upper part), and cell numbers were detected by Coulter counter analysis (lower
part). Quantification of the indicated protein under different treatments by densitometric analysis was performed, and expressed as folds of
control. Data of Western blotting were carried out at least three times, the results are representative of all of the data.
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3-OH flavone is an effective inhibitor of
E2/IGF-I-induced proliferation

Our previous studies showed that flavonoids exhibit several
important biological properties including apoptosis induction,
anti-inflammation, and antioxidant activities. We further
examined the effects of flavones on E2/IGF-I-induced
proliferation of MCF-7 cells. As illustrated in Fig. 5A, the basic
structure of flavone contains two benzene rings (A and C)
linked by a heterocyclic pyran ring in the middle. First, native
flavone and seven mono-substituted flavones including
20-OCH3, 3-OH, 3-OCH3, 5-OH, 5-OCH3, 7-OH, and
7-OCH3 flavones were used in the present study. Among the
eight tested compounds, 3-OH flavone expressed the most
potent inhibitory effect on E2/IGF-I-induced proliferation, and
others also expressed slight but significant inhibitory effects on
E2/IGF-I-induced proliferation. The inhibitory percentage of
3-OH flavone on E2/IGF-I-induced proliferation was around
75%. When replacing the 3-OH group with 3-OCH3 (3-OCH3

flavone), the inhibitory percentage dropped from 75 to 30%
(Fig. 5B). Data of the colony formation assay showed that
treatment of MCF-7 cells with 3-OH flavone significantly
reduced the number of colonies grown in soft agar stimulated
by E2/IGF-I (Fig. 5C). We further analyze the effect of 3-OH
flavone on the expression of c-Jun, and phosphorylated IRS-1
and ERKs protein byWestern blotting. As illustrated in Fig. 5D,
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3-OH, but not 3-OCH3, flavone slightly reduces the expression
of phosphorylated ERKs protein in the condition without
E2/IGF-I stimulation (Fig. 5D; left part). In the presence of E2/
IGF-I treatment, 3-OH, but not 3-OCH3, flavone addition
significantly inhibits E2/IGF-I-induced the phosphorylation of
IRS-1 and ERKs protein in according with attenuating the
expression of c-Jun protein (Fig. 5D; right part). Reduction of
intracellular peroxide levels produced by E2/IGF-I was
identified in 3-OH, but not 3-OCH3, flavone-treated MCF-7
cells under fluorescentmicroscopic observation (n¼ 3; Fig. 5E).

Differential inhibitory effects of flavonoids and the
flavonoid glycoside on E2/IGF-I-induced proliferation

Our previous studies also suggested that glycoside addition
might affect the biological activities of flavonoids; however the
role of glycoside on flavonoid inhibition of E2/IGF-I-induced
proliferation is still unclear. Two groups of flavones including
baicalein (BE) and its glycoside, baicalin (BI; baicalein-7-O-
glucuronide), and quercetin (QE) and its glycosides, quercitrin
(QI; quercetin-3-O-rhamnoside) and rutin (RT; quercetin-3-O-
rutinoside), were used in the present study. Results of
Fig. 6A show that incubation of MCF-7 cells with BE andQE, but
not their respective glycosides, BI, QI, or RT, significantly
inhibited E2/IGF-I-induced proliferation. Data of the colony
formation assay also supported BE andQEpossessing the ability



Fig. 4. Antioxidant NAC and TIR inhibition of E2/IGF-I-induced MAPK activation and cell proliferation. A: (Left part) MCF-7 cells were treated
with E2/IGF-I in the presence or absence of N-acetyl-L-cysteine (NAC; 2 mM) for 30 min. Intracellular ROS production was detected using an
oxidant-sensitiveDCHF-DAprobeandmeasuredbyflowcytometricanalysisasdescribedin‘‘MaterialsandMethods’’. (Rightpart)Thefluorescent
intensity from three independent experiments was quantitated, and data were expressed as the meanWSE. B: As described in (A), the DCF
fluorescence in MCF-7 cells under different treatments was detected under fluorescent microscopic observation, C: Cells were pretreated with
NAC(a:0.5mM;b:1mM;c:2mM)orTIR(d:25mM;e:50mM;f:100mM)for30min followedbyE2/IGF-I treatment foreither20(IRS-I,ERK,andJNK
detection) or 120 min (c-Jun detection), and the expression of the indicated proteins was detected by Western blotting. The intensity of indicated
protein was quantitated by densitometric analysis and expressed as folds of control. D: Cells were treated with E2/IGF-I in the presence or absence
of NAC or TIR for 3 days, and cell numbers were measured by a Coulter counter. Values derived from three independent experiments were
analyzed, and expressed as the meanWSE. ##P < 0.01 significantly different from E2/IGF-I-treated groups, as analyzed by Student’s t-test.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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to inhibit E2/IGF-I-induced colony formation (Fig. 6B).
Reduction of E2/IGF-I-induced c-Jun protein expression was
detected in MCF-7 cells treated with BE and QE but not their
respective glycosides, BI, QI, or RT (Fig. 6C). Inhibition of
peroxide production induced by E2/IGF-I was detected in
MCF-7 cells treatedwith BE andQE, but not BI, QI, or RT, using
fluorescent microscopic observations.

Discussion

Evidence underlying the cross-talk of E2 and IGF-I in the
proliferation of breast carcinoma is herein provided. Treatment
of MCF-7 cells with IGF-I enhanced E2-induced proliferation
through phosphorylation of IRS-1, ERKs, and JNKs via a
ROS-dependent pathway. 3-OH flavone, BE, and QE exhibited
inhibitory effects against E2/IGF-I-induced proliferation among
16 tested compounds, and a tentative structure–activity
relationship of flavonoids is illustrated.

E2 has been shown to play an important role in the formation
of breast cancer through promoting cell cycle progression and
increasing telomerase activity (Kimura et al., 2004; Han et al.,
2005). The cellular actions of E2 can bemediated by both ligand-
dependent transcriptional regulation (genomic effect) and/or
through GPCR-associated membrane ER (non-genomic effect),
which triggers different signaling cascades (Zivadinovic and
Watson, 2005). Thomas et al. (2006) indicated E2 rapidly
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induced cPLA2 activation and increased calcium response was
mediated by membrane ER. Lim et al. (2006) reported that E2
couples toG-proteins tomediate EGFR andAT-1 activation can
act similar effects in ER-negative cells than in ER-positive cells.
An increase in the expression of IRS-1 protein through
formation of the ER-IRS-1 complexwas observed in E2-induced
proliferation (Morelli et al., 2004). Induction of IGF-I and IGF-IR
proteins was detected in E2-treated cells (Lee et al., 1999), and
direct binding and activation of IGF-IR by ligand-binding ER
were reported (Kahlert et al., 2000). Zhang et al. (2005)
indicated IGF-I induction of proliferation in MCF-7 cells was
dependent on ER expression. Recent evidence reported that E2
and IGF-I synergized the proliferative actions on breast tumor
cells (Hamelers et al., 2002), and cotreatment of E2 and IGF-I
might induce ERKs activation and cyclin D1 expression leading
to the progression of cells from the G1 to the S phase (Lai et al.,
2001; Mawson et al., 2005). In the present study, we found that
E2/IGF-I stimulated the expression of phosphorylated ERa
protein in the membrane fraction of MCF-7 cells, and IGF-I
addition enhanced the phosphorylated level of ERKs, IRS-1, and
JNKs protein with stimulating MCF-7 cell proliferation in the
presence of E2. It suggests that activation of the intracellular
kinases cascade through stimulating non-genomic pathway may
participate in E2/IGF-I-induced proliferation.

Several growth factors such as vascular endothelial growth
factor (VEGF), nerve growth factor (NGF), transforming



Fig. 5. Effect of 3-OH flavone and 3-OCH3 flavone on E2/IGF-I-induced events in MCF-7 cells. A: The chemical structure of flavones used in the
study. B: MCF-7 cells were treated with the indicated flavones (25mM) for 30 min followed by incubation with E2/IGF-I for an additional 3 days, and
cellnumberswere measured byaCoulter counter.C: Cellswere treated withE2/IGF-I in thepresenceor absence of3-OH flavone (25mM) fora21-
day incubation, and colony formation was detected by a soft agar assay as described in ‘‘Materials and Methods’’; the number of colonies under
different treatments was counted under microscopic observation. Values derived from three independent experiments were analyzed, and
expressed as the meanWSE. #P < 0.05, ##P < 0.01 significantly different from indicated groups, as analyzed by Student’s t-test. D: (Left part) Cells
were alone treated with 3-OH flavone or 3-OCH3 flavone (25 and 50mM) for 30 min, and the expression of phosphorylated and total ERKs protein
was examined by Western blotting. (Right part) MCF-7 cells were pretreated with 30 min followed by E2/IGF-I treatment, and the expression of
indicated proteins was analyzed by Western blotting using specific antibodies. The intensity of each protein was quantitated by densitometric
analysis and expressed as folds of control. E: Cells were treated with 3-OH flavone or 3-OCH3 flavone (25mM) followed by the addition of E2/IGF-I
for 30 min, and the fluorescence in cells was detected by fluorescent microscopic observation. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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growth factor-b1 (TGF-b1) and interleukin-1b (IL-1b) were
demonstrated to induce proliferation of cells via ROS
production (Suzukawa et al., 2000; Colavitti et al., 2002; Hwang
et al., 2004; Sturrock et al., 2006). Felty et al. (2005) indicated
E2-induced mitochondria ROS-mediated stimulation of redox-
sensitive kinase via intergrin pathway, but not ER, and
generation of ROS by E2 leading to activate oxidant-sensitive
transcription factors such as CRE, NRF-1 and TRE. In the
present study, the intracellular peroxide level was slightly
increased in MCF-7 cells in the presence of E2 or IGF-I
treatment, and that was significantly elevated in E2/IGF-I
treated cells (data not shown). Incubation of cells with the
chemical free radical scavengers, NAC and TIR, significantly
attenuated E2/IGF-I-induced proliferation and reduced the
expression of phosphorylated IRS-1, ERK, JNK, and c-Jun
proteins. This suggests that ROS induction leading to activation
of the intracellular kinase cascade is an early event in E2/IGF-I-
induced proliferation. A ROS-dependent pathway is thus
identified in the E2/IGF-I-induced proliferation of breast
carcinoma cells.

The biological activities of flavonoids have extensively been
investigated, however their structure–activity relationships are
still unclear. Hydroxylation occurs in the metabolism of
flavonoids, and previous studies suggested that the greater the
number of hydroxyl groups, the more-potent antioxidant and
anti-tumor activities flavonoids have (Cao et al., 1997; Babu
et al., 2003). Our previous study found that hydroxylation at
C40 or C6 is important for the apoptosis-inducing activity of
JOURNAL OF CELLULAR PHYSIOLOGY DOI 10.1002/JCP
flavonoids (Ko et al., 2004). In addition, 3-OH flavone showed
an effective antiproliferative effect against epidermal growth
factor (EGF)-induced proliferation in A431 cells (Shen et al.,
2004b). In the present study, the addition of 3-OH flavone
effectively attenuated E2/IGF-I-induced proliferation.
Reduction of intracellular proliferative events such as IRS-1 and
ERK protein phosphorylation was detected in 3-OH flavone-
treated cells in the presence of E2/IGF-I treatment. This
suggests that hydroxylation at C3 may be essential for the
antiproliferative effects of flavonoids. In addition to
hydroxylation, glycosylated flavonoids occur extensively in
plants, herbs, and fruits, and the addition of a glycoside has been
shown to increase the hydrophilic property of flavonoids, and
prevent flavonoids from enzymatic oxidation in plants
(Regev-Shoshani et al., 2003). Plumb et al. (1999) reported that
adding glycoside moieties to flavonol decreased its antioxidant
properties. Our previous study demonstrated that aglycon
flavonoids such as quercetin have more anti-inflammatory and
cytoprotective activities than the respective glycosides,
quercitrin and rutin, in several different cell types (Shen et al.,
2003; Chow et al., 2005; Chen et al., 2006). Similarly, myricetin,
but not its glycoside, myricitrin, possesses apoptosis-inducing
activity in HL-60 cells (Ko et al., 2005a), and inhibits tumor
invasion andmigration in human colorectal carcinoma cells (Ko
et al., 2005b). Results of the present study show that BE andQE,
but not their respective glycosides, BI, QI, or RT, inhibit
E2/IGF-I induced proliferation and colony formation with
concomitant blocking of c-Jun protein expression. These data



Fig. 6. Effectsof BE, BI,QE, QI, andRTon E2/IGF-I-induced events in MCF-7 cells.A:MCF-7 cell weretreatedwith the indicated flavones (25mM)
for30minfollowedby incubationwithE2/IGF-I fora further3days,andthecellnumbersweremeasuredbyaCoultercounter.B:Cellsweretreated
with E2/IGF-I in the presence or absence of BE and QE (25 mM) for a 21-day incubation, and colony formation was detected by a soft agar assay as
described in ‘‘Materials and Methods’’; the number of colonies under different treatments was counted under microscopic observation. Data are
presented as the meanWSE of three independent experiments. #P < 0.05, ##P < 0.01 significantly different from the indicated group. C: Cells were
treatedwithBEorBI(25or50mM)for30minfollowedbyE2/IGF-Itreatment,andtheexpressionofc-JunproteinswasanalyzedbyWesternblotting
(upper part). (Lower part): As described above, cells were treated with QE, QI, or RT (25 and 50mM) for 30 min followed by E2/IGF-I treatment,
and the expression of c-Jun proteins was analyzed by Western blotting using specific antibodies. Quantification of the c-Jun protein under
different treatments was done by densitometric analysis and expressed as folds of control. Western blotting were done at least three
times, the results are representative of all of the data. D: Cells were treated with BE, BI, QE, QI, or RT followed by the addition of E2/IGF-I
for30min,andthefluorescence in cellswasdetectedbyfluorescent microscopic observation. [Color figurecanbeviewed intheonline issue,which
is available at www.interscience.wiley.com.]

E 2 / I G F - 1 - I N D U C E D P R O L I F E R A T I O N V I A R O S P R O D U C T I O N 673
support the notion that glycosides act as a negative moiety in
the biological actions of flavonoids. In addition, flavonoids such
as genistein, apigenin and quercetin have been reported are
potent inhibitors of tyrosine and serine/theronine kinases due
to their antioxidant capacity (Agullo et al., 1997; Wijetunge
et al., 2000). In the present study, 3-OH flavone, BE, and QE
addition suppresses E2/IGF-1-induced proliferative events, and
reduction of E2/IGF-1-induced intracellular peroxide was
observed in 3-OH flavone, BE, and QE-treated MCF-7 cells by
DCHF-DA staining analysis. These data indicate
ROS-scavenging activity of 3-OH flavone, BE, and QE may
contribute to their inhibitory effect against E2/IGF-1-induced
proliferation of MCF-7 cells.

In conclusion, this study provides the first evidence to
indicate that E2 and IGF-I participate in the proliferation and
transformation of breast cancer via ROS-dependent activation
of intracellular kinase cascades. Flavonoids such as 3-OH
flavone, BE, and QE exhibit effective inhibitory activities against
E2/IGF-I-induced proliferative events, and areworthy of further
investigation.
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