台北醫學大學微積分第一次平時測驗命題紙

系級	授課教師	考試日期	學號	· 姓名
醫學系	潘力誠			

- 1. Let $\vec{F} = (1, 2, 3)$, and let ρ be the plane x + y + z = 3. Find the component of \vec{F} normal to ρ and the projection of \vec{F} normal to ρ . (10%)
- 2. Find the nth order Taylor polynomial for cos (x). (10%)
- 3. Compute the derivative of function $f(x) = \frac{(x^2 + 2x + 3 \sqrt{2})\tan x}{x^2 \pi x}$. (10%)
- 4. Find the extrema of $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. (10%)
- 5. Find the slope of a logistic function $f(t) = \frac{1.25}{1+1.25e^{-0.4t}}$ at t=10 (10%)
- 6. Three ropes of lengths, R1, R2, and R3 are suspended from the ceiling at positions \vec{A} , \vec{B} , and \vec{C} as in the figure. The other ends are tied to a weight at \vec{P} that pulls the ropes tight. Find the coordinate of \vec{P} given that R1=2, R2=1.5, R3=1.5, \vec{A} =(1,0,0), \vec{B} =(0,1,0), and \vec{C} =(1,1,0). (10%)
- 7. Approximate the root of $y = x^3 + 3x^2 5$, using Newton's method and $c_0 = 1$ as initial guess. (10%)
- 8. Sketch the trace of vector $\vec{r} = \vec{r}1 + \vec{r}2$, where $\vec{r}1 = (2t + 1, -2t)$ and $\vec{r}2 = (\cos(2\pi t), \sin(2\pi t))$. (10%)
- 9. Find the equation of the normal line to the graph of $f(x) = \ln(x(x^2 + 1)^2)$, at x = 5. (10%)

10. Find the least square line for the given data. (10%)

X	у	
10	84	
20	71	
30	80	
40	73	
50	60	
60	52	
70	56	
80	46	
90	36	