臺北醫學大學 92 學年度第 — 學期期中考試 命 題紙

系	級	科	•	B	授	裸教	師	考	杖	耳	期	學	號	姓	名
3		1	X		14	X	WZ	93 4 /	/月_	/2日第_	/				
×	がの数	注意本	試題共		如	没現画	教	下足及空白	頁或	缺印・應望	當場請习	え補齊・	否則缺少部份概以	以零分計	0

- 1.A 2.0 mC_i source of R_n (Randon, T_h =3.83days) is permanently implanted into a patient. (a)Determine the total emitted radiation in unit of mC_i-hr (b)If this source were left in place in patient for five days, find the emitted radiation in unit of mC_i-day. (12%)
- 2. Calculate the activity (in unit of C_i) of a sample containing 10^{10} atoms of ¹³¹I, What is the mass of this sample? (T_h =8.1days) (12%)
- 3.An x-ray beam with initial intensity (I₀)of 10⁶ photons/cm²-s each having an energy of 65000ev,is incident upon 4-cm-thick bone. If the linear attenuation coefficient is 0.16cm⁻¹,(a)Determine the final intensity. (b)find the fraction transmitted and absorbed %. (12%)
- 4. Assume that the x-ray tube has a current of 200mA. Using Kramers' analysis calcuate (a)the efficiency of this x-ray production; (b)the output power of the x-rays produced in unit of watt; and (c)the rate of heat deposited at the anode in unit of watt. (12%)
- 5. Find the maximum kinetic energy of the α-particle emitted in the following

 α -decay reaction: ${}^{226}_{88}R_a \rightarrow {}^{222}_{86}R_n + \alpha - particle$

Given: ${}^{226}_{88}R_a$ (鐳)=226.025406amu, ${}^{222}_{86}R_n$ (氢)=222.017574amu

;H_e=4.002603amu 1amu=931.5MeV (16%)

- 6. A $^{32}_{15}$ P nucleus decays into $^{32}_{16}$ S with an emission of a β^- particle and an antineutrino $\bar{\nu}$. The mass of p-32 atom is 31.973909 amu and the mass of S-32 atom is 31.972073 amu. The mass of one amu is about 931.5Mev.
 - (a) Calculate the maximum energy E_{max} of the emitted β^- particle in unit of MeV ?
 - (b) What is the average energy \overline{E} of all the emitted β^- -particle in unit of MeV? (16%)
- 7.(a)Explain the phenomenon of k-capture.(b)Write down the nuclear reaction for k capture.
- (c) What will happen as an electron capture occurs? (8%)
- 8. The figure as show is the β^- and β^+ spectra for C_u -64.

*

- (a) Explain why the β^+ particles will have more mean kinetic energy than the β^- particles.
- (b)As a C_u -64 nucleus decay into Ni-64 by β^+ decay . What is the energy difference between the C_u -64 nucleus and the Ni-64 nucleus ? (12%)

