Fig. 1. Concentration- and time-dependent increases in nitrite accumulation and iNOS expression caused by BSA-AGEs in RAW 264.7 cells. Cells were incubated with various concentrations of BSA-AGEs for 24 h (Panel A), or with BSA-AGEs (300 µg/mL) for various time intervals (Panel C), then the medium was removed and analyzed for nitrite accumulation from RAW 264.7 cells. Data represent the mean \pm S.E.M. of three independent experiments done in triplicate. In parallel experiments, AGE-induced iNOS expression was analyzed. RAW 264.7 cells were incubated with various concentrations of BSA-AGE for 24 h (Panel B), or with BSA-AGEs (300 µg/mL) for various time intervals (Panel D); cells were lysed, and the cell lysate was subjected to Western blot analysis using an iNOS-specific antibody. dose-dependent manner (Fig. 1B). When cells were treated with a submaximal concentration (300 mg/mL) of BSA-AGEs for various time intervals, nitrite levels increased in a time-dependent manner, concomitant with upregulation of the iNOS protein, which began at 6 h and reached a maximum at 24 h (Fig. 1C, D). In the following experiments, cells were treated with 300 µg/mL of BSA-AGEs for 24 h. ## Involvement of the PKA signaling pathway in AGE-stimulated iNOS expression and nitrite production by RAW264.7 cells To investigate whether cAMP-dependent protein kinase (PKA) is involved in the AGE-stimulated induction of iNOS, PKA inhibitors (KT 5720 or H-8) were used to pretreat cells. When cells were pretreated with KT 5720 for 30 min, AGE-induced nitrite release and iNOS production were inhibited by KT 5720 (0.03-1 μ M) in a dose-dependent manner (Fig. 2A). Similar results were observed when cells were pretreated with another PKA inhibitor, H-8 (0.3-10 μ M) (Fig. 2B). Consistently, AGE-induced iNOS expression was attenuated by pretreatment with H-8 (3 or 10 μ M) or KT 5720 (0.3 or 1 μ M) (Fig. 2C). These results suggest that cAMP-dependent protein kinase is involved in AGE-stimulated NO release. ## AGE-stimulated cAMP formation in RAW 264.7 macrophages Because the PKA pathway seems to be involved in AGE-induced NO production and iNOS induction, intracellular cAMP was assayed following BSA-AGEs (300 μ g/mL) treatment for various time periods (Fig. 3A). cAMP formation was apparent at 1 h, with a maximum at 24 h after the BSA-AGEs were added, and gradually decreased thereafter (data not shown). When cells were treated for 24 h with various concentrations of AGEs, AGEs stimulated cAMP accumulation in a dose-dependent manner (Fig. 3B). ## Effects of dibutyryl cAMP on NO production and iNOS induction in RAW 264.7 cells Because cAMP-dependent protein kinase seems to be involved in AGE-stimulated NO release, dibutyryl cAMP was used to activate PKA, and its effects on nitrite