Table 1. The Effect of Halothane at Clinical Concentrations on Platelet Aggregation in Vitro | Authors | Material | Agonist | Aggregation | |---|----------|--------------------------------------|-------------------------------| | Ueda (1971) ⁵ | canine | ADP | 1 | | Bjoraker (1979) ⁶ | human | ADP | ter et al-(1980) ⁶ | | Dalsgaard-Nielsen and Gormsen (1980) ⁷ | human | ADP | \ | | Walter et al. (1980) ⁸ | human | ADP | | | Bertha et al. (1990) ⁹ | human | ADP, Epi, collagen, AA | regulacia ↓ bgs of | | Hirakata et al. (1995) ¹⁰ | human | ADP, Epi, thrombin, STA ₂ | (ace to ↓ to utas | | Kohro and Yamakage (1996) ¹¹ | human | thrombin | 5//8991 James | | Corbin et al. (1998) ¹² | human | thrombin, U46619 | ↓ | Notes: \downarrow , decreased; –, no change; ADP, adenosine diphosphate; Epi, epinephrine; AA, arachidonic acid; STA₂, a thromboxane A₂ analog; U46619, a thromboxane A₂ receptor agonist. Table 2. The Effect of Halothane at Clinical Concentrations on Platelet Aggregation in Vivo | Authors | Type of surgery | No. of patients | Aggregation | Bleeding time | |---|-----------------|-----------------|---------------------|-------------------| | O'Brien et al. (1971) ¹³ | thoracic | 10 | ines, mi Volnig din | NA | | Kokores et al. (1977) ¹⁴ | abdominal | 15 | ↓ | 1949w 1 | | Lichtenfeld et al. (1979) ¹⁵ | gynecological | 12 | 用考虑是分别的情 | ŅA | | Dalsgaard-Nielsen et al. (1981) ¹⁶ | orthopedic | 10 | | inbibility effect | | Fyman et al. (1984) ¹⁷ | minor | 51 | NA | on | | Sweeney and Williams (1987) ¹⁸ | craniofacial | 9 | ↓ | NA | | Sweeney and Williams (1987) ¹⁸ | dental | 9 | \ | NA | Notes: ↓, decreased; –, no change; ↑, increased; NA, not available. platelet uptake on the grafts. In 1989, Bertha et al.²⁰ reported the effect of halothane on acute thrombus formation in artificially stenosed coronary arteries in dogs. Halothane was postulated to have a protective effect against acute thrombus formation in stenosed coronary arteries. A recent study by Heindl et al.²¹ using a model of isolated guinea pig hearts showed that halothane could reduce the adhesion of platelets in the coronary system under low-flow conditions. Investigators have tried to postulate the possible mechanism for the inhibitory effect of halothane (Table 3). Over the last 5 years, there have been considerable advances in the evaluation of platelet function. A consensus has been reached from these recent studies. ^{10-12,23,24} The action site of halothane localizes at the TXA₂ receptors on the platelet membrane. By reducing the TXA₂ receptor-binding affinity at the ligand binding site, halothane modulates TXA₂ receptor signaling. Consequently G protein-coupled PLCβ will not be activated, and hence the downstream IP₃ and DAG are reduced. The final result is a decreased intracellular calcium concentration, which plays a vital role in platelet aggregation. Sevoflurane is another volatile anesthetic demonstrated to have inhibitory effects on platelet function. ²⁵⁻²⁷ Sevoflurane exerts its effect differently from halothane. Sevoflurane inhibits platelet TXA₂ formation by suppressing cyclooxygenase activity but does not interfere with TXA₂ receptor-binding affinity. The other 3 volatile anesthetics, enflurane, ^{28,29} isoflurane, ^{27,30,31} and desflurane, ³¹ appear to have minimal or negligible effects on platelet function. There is no evidence that these 3 volatile anesthetics affect platelet aggregation at concentrations used clinically. ## INTRAVENOUS ANESTHETICS Barbiturates, including pentobarbital, methohexital, and thiopental, have been investigated both in vivo and in vitro. The results show that human platelet aggregation is not altered by barbiturates.^{32,33} However, a recent study by Parolari et al.³⁴ demonstrated that thiopental at therapeutic concentrations inhibited platelet activation in patients undergoing cardiac surgery. The