New Taipei Journal of

Medicine

NTJM

Received: Feb. 4, 1999 Accepted: March 4, 1999

Yuan-Jong Bin ⁶ Ing-Kai Wang ^a Hsueh-Hsia Wu ^a Chin-Ja Chen ^a Horng-Mo Bee*

- ^a School of Medical Technology,
- ^b Graduate Institute of Pharmaceutical Sciences,

Taipei Medical College Taipei 110-31, Taiwan, R.O.C.

Key Words

Advanced glycosylation end products ELISA Diabetic complications HbA_{1c}

Elevation of Serum Advanced Glycosylation End Products in Diabetic Patients

ABSTRACT

Reducing sugars react with amino groups of proteins to form a variety of fluorescence-producing advanced glycosylation end products (AGEs). Serum lowmolecular-weight AGEs (LMW-AGEs) have been linked with the development of diabetic-associated cardiac vascular complications. In this report, we raised antibodies specifically against AGEs and developed a competitive enzymelinked immunosorbent assay (ELISA) to determine the serum LMW-AGEs in 2 age groups of non-diabetics and 1 group of diabetics. By defining 1 AGEs unit (AU) as the inhibition that results from 1:5 diluted pooled serum in competitive ELISA, we found that the circulatory AGEs levels in the young group as well as those in the elderly group of non-diabetics fit normal distributions (p < 0.05) and their reference ranges were 3.12 ± 0.52 (n = 30) and 4.41 ± 1.1 AU (n = 36), respectively. The circulation AGEs levels in diabetic patients were 8.96 ± 2.13 AU (n = 32) which is significantly higher than in both age groups of non-diabetics. The circulation AGEs data correlated well with the HbA_{1c} values obtained from patients with diabetes (r = 0.86). In conclusion, these data reveal that circulation AGEs are higher in the elderly as compared to those of the young group and may serve as a circulation marker reflecting the severity of the diabetic sequel.

INTRODUCTION

Aging or prolonged elevation of glucose levels in diabetes patients results in a number of complications including nephropathy, atherosclerosis, retinopathy, neuropathy, and cataracts. These complications have been related to the non-enzymatic glycosylation reaction, also termed the "Maillard reaction". The process is a non-enzymatic reaction of free amino groups of proteins and reducing sugars. This reaction proceeds from reversible Schiff bases to stable covalently bounded Amadori rearrangement products. With time,

NTJM

Tel: 886-2-27361661 ext. 749 Fax: 886-2-23772150 Dr. Horng-Mo Lee School of Medical Technology, Taipei Medical College, 250, Wu Hsing Street, Taipei 110-31, Taiwan, R.O.C. Tel: 886-2-27361661 ext. 536, Fax: 886-2-27324510 E-mail: Leehorng@tmc.edu.tw