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Abstract 

Discriminating heterogeneous cancers by microarrays is 

a topic of much interest in bioinformatics. A number of 

methods have been proposed and successfully applied to 

this problem. In this paper, we aim at using genetic 

algorithms for gene selection and propose silhouette 

statistics as discriminant function to classify breast 

cancers for biomarker discovery. Distance metrics and 

classification rules based on silhouette statistics have 

also been discussed to improve our algorithms for high 

classification accuracy. Finally, the proposed method is 

compared to previously published methods. Many 

experimental results show that our method is effective to 

discriminate breast cancer subtypes and find many 

potential biomarkers to help cancer diagnosis. 

Keywords ： Genetic algorithm, silhouette statistics, 

microarray, classification, breast cancer 

1、Introduction 

Breast cancer is one of the most important diseases 

affecting women in Taiwan. Traditionally, a thorough 

evaluation for breast cancer includes an examination of 

both prognostic and predictive factors. Prognostic factors 

like tumor size, auxiliary lymph node status, and tumor 

grade, and predictive factors like estrogen receptor (ER), 

progesterone receptor (PR), and HER2/neu considered in 

the routine examination of breast cancer patients, 

however, cannot ultimately distinguish those patients who 

have identical traditional diagnosis and how they may 

respond to different therapies. Because of this, recent 

research suggests that the classification of tumors based 

on gene expression patterns from microarray data may 

serve as a medical application in the form of diagnosis of 

the disease as well as a prediction of clinical outcomes in 

response to treatment [4][11]. 

Microarrays used to discriminate multiple cancer types 

has become an interesting topic in bioinformatics. In 

general, the classification of microarray data may be 

thought as a problem consisting of two tasks: (1) gene 

selection and (2) classification. Gene selection finds the 

relevant genes used for classification analyses; 

classification requires the construction of a model, which 

defines the characteristics of classes and predicts the class 

of a novel sample. In the past few years, algorithms 

[1][2][5][6][13] with rank-based gene selection schemes 

have been applied to 2-class or 3-class classification 

problems based on gene expression data, and most have 

achieved 95%-100% classification accuracy. When these 

methods suggest that genes that classify tumor types well 

might serve as prognosis markers, the classification of 

microarrays for biomarker discovery becomes an 

important topic in bioinformatics. In fact, while there are 

certainly more types of cancers, if we expand the tumor 

classification problem to multiple tumor classes (more 

than 5), this problem will become more difficult because 

the dataset will contain more classes, but only a small 

number of samples. This makes data variations within a 

class become relatively more accentuated [10]. Therefore, 

genetic algorithms (GAs), one of the wrapper-based gene 

selection methods, were applied to multiclass microarray 

classification problem and have shown their superiority to 

improve the prediction accuracy of a classifier 

[3][8][9][12]. 
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When there are more types of cancers, and potentially 

even more subtypes, and when the heterogeneity of 

cancers is still the most significant problem in the 

practical management of the individual patient, the 

development of microarray technologies to provide the 

possibility to discover genes used as molecular markers 

for a finer definition of tumor diversity is necessary. In 

this paper, we also present GA to select relevant gene 

subsets to further use them for classification tasks by 

silhouette statistics. The effectiveness of our technique is 

demonstrated through comparisons with other methods 

and the findings of discriminatory genes. Our approach 

exhibits an excellent performance not only in 

classification accuracy but also at identifying genes that 

are already known to be cancer associated. 

2、Materials and methods 

2.1、Discriminant analysis based on silhouette statistics 

Linear Discriminant Analysis (LDA) is a classical method 

and has been shown to perform well with microarrays in 

prediction problems. Each class is characterized by its 

vector of means/centroid. To predict the class of an 

unknown sample, the unknown will be assigned to which 

it is nearest by computing distance between its expression 

profile and each class centroid. We hereby extend this 

concept and propose silhouette statistics as the 

discriminant function used for pattern classification [7]. 

For pattern classification, assume that we are given a 
dataset in which D ={( ), for j=1…m} is a set of m 

number of samples with well-defined class labels. Note 
that is the vector of tumor 

pattern for j-th sample describing expression levels of n 

number of predictive genes and lj  L ={C1,C2,…,Cq} is 
the class label associated with 

jj le ,v

t=v

∈

jnjjj eeee ),...,,( 21

jev . Note also that q is the 

number of classes. The proposed discriminant function 
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In our definition, let ),( sj Ced v denotes the average 

distance of j-th sample to other samples in the class of Cs, 

)( jeb v
denotes },)},,(min{ srCeCed rjsj ≠∈

vv , r, 
s ∈ (1,2,…q), q is the number of classes, and 

)( jea v denotes ,,),,( srCeCed rjsj =∈
vv  In other 

words, )( jea v is the average distance between jev and 

all other samples in the same class, and )( jeb v is the 

minimum average distance of jev to all samples in other 

classes. The discriminant function of Sil( jev ) returns the 

discrimination score in the range from −1 to +1, and 

indicates how well a sample represented by the vector of 

jev can be assigned to its own class. Intuitively, samples 

with a large silhouette statistic value are well classified, 

those with small silhouette values tend to lie between 

classes, and those with a negative value are poorly 

classified. To prevent classifying samples into their own 

classes with negative silhouette values, we set Sil( jev )＞ 

0 as a criterion to guarantee that each sample can be 

correctly classified. This means that once the returning 

value is less than zero, we consider that the corresponding 

sample is misclassified under the discriminant variable 

of jev . Therefore, the classification rule for the classified 

samples is defined as  

 C (
jev ) = lj, iff Sil( )＞0 (2) 

jev

Note that the classification rule can also be used to 

predict the labels of novel samples. For a novel sample, 

its label should be assumed to be from C1 to Cq and the 

corresponding silhouette statistic should be calculated by 

Equation (1). Since there exists only one class deserving 

the minimum average distance for the novel sample, only 

one positive silhouette value can be obtained. In contrast, 

in our experiments if a novel sample is assigned to the 

class that returns a positive silhouette value causing the 

predicted label to be different from the actual class label, 

we can state that a misclassification has occurred. 

From Equation (1), we may also find that the efficiency 

of silhouette statistics depends on two factors: (1) the 

distance metric used in silhouette statistics, and (2) the 
sample pattern jev . Therefore, in Table 1, we implement 

two different kinds of distance metric proposed by Speed 

[15] to compare the effects on silhouette statistics and we 
also discuss how the pattern jev can be chosen by GA in 
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Section 2.2. 

Table 1：Distance metrics 

Metrics Formula 
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2.2、Genetic algorithm for gene selection 

In order to select an optimal subset of features from a 

large feature space, we employ the GA approach. The 

genetic algorithms are adopted from Ooi and Tan [12], 

with toolboxes of two selection methods including 

stochastic universal sampling (SUS) and roulette wheel 

selection (RWS). In addition, two tuning parameters, Pc: 

crossover rate and Pm: mutation rate, are used to tune 

one-point and uniform crossover operations to evolve the 

population of individuals in the mating pool. The format 

of chromosomes used to carry subsets of genes are 

defined by the string Si, Si = [G g1 g2 … gGmax], where G 

is a randomly assigned value ranging from Gmin to Gmax 

and g1 g2 … gGmax, are the indices of Gmax genes 

corresponding to a dataset. In our algorithms, we will try 

as many chromosomes as possible to choose the optimal 

gene subset by scoring those chromosomes using the 

fitness function of f (Si) = (1 – Et) ×100, where Et means 

the training error rate of LOOCV test. In order to have an 

unbiased estimation of initial gene pools, our algorithms 

will set 50 gene pools to run following steps. 

Step 1: For each gene pool, the evolution process will go 

100 generations and each generation will evolve 150 

chromosomes in which the size of genes will range from 

Gmin=30 to Gmax=50. 

Step2: According to the gene indices in each 

chromosome, only the first G genes are picked from g1, 

g2… gGmax to form sample patterns for classification. In 

other words, the dataset is then represented by a matrix 

XG×m form with rows for the G genes and columns for the 

m samples.  

Step 3: In order to estimate the fitness score for each 

chromosome, the training dataset XG×P of P training 

samples and the test dataset XG×m-P of m-P test samples 

are fed into the following program to evaluate how well 

those samples can be correctly classified under silhouette 

statistics. 

1. FOR each chromosome Si  

2.   FOR each training sample with class label lj 

3.      Build up discriminant model with the remaining 

training samples for LOOCV test 
4.    IF (Sil(

jev )<0) 

5.     XtError = XtError + 1  // misclassified 

6.   END FOR 

7.      Et = XtError/total training samples  // error rate 

8.   Fitness [Si] = (1– Et) ×100  //fitness score of Si 

9.   END FOR  

10. Findmax (Fitness)   // obtain optimal chromosome 

Step 4: By calculating the fitness value of classification 

accuracy in a generation, the optimal fitness value will be 

stored to provide feedback on the evolution process of 

GA to find the increasing fit of chromosomes in the next 

generation.  

Step 5: Repeat the process from Step 2 for the next 

generation until the maximal evolutionary epoch is 

reached. 

2.3、Dataset 

The breast cancer gene expression profiles were measured 

with 7937 spotted cDNA sequences among the 85 

samples with 6 different classes of breast tumor that were 

supplied by Stanford Microarray Database. This dataset 

was first studied by Sorlie et al. (2001) [16] and can be 

downloaded from http://genome-www5.stanford.edu/. 

The dataset originally contained six subclasses including 

basal-like (14 samples), ERBB2+ (11 samples), normal 

basal-like (13 samples), luminal subtype A (32 samples), 

luminal subtype B (5 samples), and luminal subtype C 

(10 samples). In our experiments, the dataset was divided 

into a training set of 57 samples and a test set of 28 

samples so that the training errors could be calculated by 

leave-one-out cross validation (LOOCV) tests, and so that 
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a model could be built with the training data to present 

the results of predicting the label of unseen data. The 

training/test datasets with the ratio of 2:1 include gene 

expression profiles of 10/4 basal-like, 7/4 ERBB2+, 9/4 

normal basal-like, 21/11 luminal subtype A, 3/2 luminal 

subtype B, and 7/3 luminal subtype C. 

3、Experiments and results 

3.1、Classification accuracy 

In Figure 1, we have demonstrated the convergence of the 

proposed method and have shown that gene expression 

profiles are more sensible to correlation distance metric. 

In order to choose the best gene subset in a chromosome, 

our criteria is based on the idea that the optimal 

chromosome must result in a classifier to work well on 

the LOOCV test and to work equally well on independent 

test for previously unseen samples. Therefore, when the 

training phase converges, we will choose the best 

chromosome which produces the best prediction accuracy 

on testing samples, and hereby the number of predictive 

genes indicated by G and their indices can be obtained. 
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Figure 1：The degree of training accuracy (top line) 
and testing accuracy (bottom line) using (A) 
1-Pearson and (B) Euclidean distance metrics from 
the best run out of 50 individual runs. 

In Table 2, we have tried many groups of GA parameters 

for possible prediction performances. The best prediction 

accuracy was achieved using the Uniform crossover and 

SUS selection strategy of GA. The best predictor set 

obtained from our method exhibits LOOCV accuracy (Ac) 

of 94.7% in comparison with the cross validation success 

rate of 89% by the BSS/WSS/SVM [14]. Even in 

diagnosing blind test samples our method needed only 40 

predictive genes to produce independent test accuracy (Ai) 

of 92.8%, whereas BSS/WSS/SVM only performed cross 

validation tests and needed hundreds of predictive genes. 

Table 2： Accuracy measured in percentage 

Breast cancer data 

(57 for training, 28 for testing) 1-Pearson Euclidean 

Pc Pm Crossover Selection Ac Ai G Ac Ai G

1 0.002 Uniform SUS 94.7 92.8 40 91.4 89.3 34

0.7 0.005 One-point SUS 93 85.7 40 89.5 85.7 41

0.7 0.001 Uniform RWS 94.7 89.3 39 93 85.7 39

0.8 0.02 One-point RWS 89.5 89.3 34 

 

86 82.1 30

3.2、Classification confidence 

The silhouette statistics can be used to assess the quality 

of clustering by measuring how well an object is assigned 

to its corresponding cluster. According to the 40 predictor 

genes obtained above, Figure 2 shows the prediction 

confidence of each sample classified. 
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Figure 2：The silhouette value for (A) training 
samples and (B) testing samples. 

3.3、Meaningful genes for breast cancer data 

From the best result through our method, the heatmap of 

Figure 3 identifies the filtered 40 genes to reveal potential 

tumor subclasses and their associated biomarkers. Despite 

the lack of a broader investigation of these genes, below 

we list some informative genes and describe their 

relationships with breast cancers.  

(1). ESR1 is a valuable predictive factor to help 

individualize therapy of breast cancer since its gene 

amplification is frequent in breast tumor cells. 

(2). FLT1 and VEGF express more abundant in cancer 

cases with metastases than in cases without 

metastases. 

(3). RARRES3 gene overexpression inhibits the growth 

of many cell lines, and it may function as an 

antiproliferative and antitumor agent. 
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(4). MMP12 is a proteolytic enzyme. It can be evaluated 

the association of breast cancer risk and survival 

with two common polymorphisms in the MMP12 

gene: A-82G in the promoter region and A1082G in 

exon. 

(5). GATA-3 is a significant predictor of overall 

survival. 

(6). TERF1 encodes a telomere specific protein which 

functions as an inhibitor of telomerase to maintain 

chromosomal stability. 

(7). KRT8 expresses in the breast epithelium, but at 

higher levels in the luminal than in the basal 

component. 

(8). Kallikrein 5 is a potential novel serum biomarker 

for breast and ovary cancers. 

(9). PGK1 is a prognostic biomarker that differentially 

expresses in ERBB2+ breast tumors. 

 

    

 

 

 
Figure 3：Expression profiles of predictor genes (40 genes) from experimental dataset. The x-axis denotes the tumor 
types. The name and brief descriptions of the predictor genes are shown along the y-axis. The intensity of red 
colored small squares represents the degree of up-regulated gene expression and the intensity of green color 
represents down-regulated gene expression as well as the black color represents unchanged expression levels.   

   

4、Conclusions 

In this paper, we propose a genetic algorithm adopting 

silhouette statistics with correlation metrics for gene 

selection and pattern classification. Experimental results 

prove the effectiveness and superiority of our method to 

improve the prediction accuracy and to reduce the 

number of predictive genes. Furthermore, we not only 

identify many predictors that are already known to be 

important for breast cancers, but also find many potential 

targets for further biomarker researches. Finally, we hope 

that the proposed method would be a helpful tool that can 

be applied to analysis of mircroarray data for cancer 

diagnosis in clinical practice. 
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