
Design a pathway/genome expert system using a prolog machine

incorporated with a parallel hardware searcher
§

Wenlung Shu
1
 and Junming Lan

2

Bioinformatics Department
1

and CSIE Department
2

Chung Hua University, Hsin Chu, Taiwan

wlshu@chu.edu.tw

§
 The design concept of this searcher had been utilized to apply the patent of Taiwan (application No: 095108044) and

the patent of USA (application No: 11/416, 229) with financial support of Chung Hua University.

Abstract

 It is well recognized that processing complex

pathway/genome databases (PGDB) is a very time

consuming task. A specific prolog machine which is

incorporated with a parallel hardware searcher is

proposed to process PGDB in this paper. These

databases and the relevant programs are represented as

prolog horn clauses (facts and rules) which are treated

as objects, and stored in DRAM to increase access time.

Search module is a parallel hardware searcher with 9

processor units and 9 corresponding DRAM modules.

Index files of object databases can be efficiently

processed in search module, and each record of index

file contains a search value of an object and

corresponding physical address of this object.

 Java is used to integrate search module and SWI

prolog interpreter. Search module finds all goal related

objects by searching index files of object databases

continuously. Therefore, only a small portion of

necessary objects is transferred to prolog interpreter for

further implementation. This specific searcher can

readily solve the bottleneck of prolog machine. This

expert system itself can have enough intelligence to

answer pathway/genome problems, and can be adopted

for biological process, drug discovery and medical

diagnosis research. This type of prolog machine can

also be applied to process huge knowledge bases rapidly

for robotics and fifth generation computers.

1. Introduction

As genomic information becomes available for a

growing number of organisms, it becomes essential to

have efficient method to process knowledge resources

for every organism. The biocyc collection of

pathway/genome databases [1] contains more than 160

databases, including: ecocyc and metacyc. The pathway

tools software [2] can be used to query, visualize, and

analyze existing pathway/genome databases from the

biocyc collection, and to create new databases for an

annotated genome.

The main purpose of this paper is to develop an

intelligent system for biological process, drug discovery

and medical diagnosis research through

pathway/genome databases. A specific prolog machine

which is incorporated with a parallel hardware searcher

is proposed in this paper. The pathway/genome

databases and the programs to process these databases

are represented as rules and facts. These horn clauses

are treated as objects and stored in DRAM to increase

access time. Each record of index files for these objects

contains search attribute and physical address. Search

module is a parallel hardware searcher with 9 processor

units and 9 corresponding DRAM modules. Index files

of object databases can be efficiently processed in

search module. Java is used to integrate search module

and SWI prolog interpreter [3, 4]. Search module finds

the goal related objects through index files. Since only a

small portion of objects is transferred to prolog

interpreter for further procession, this searcher can

readily solve the bottleneck problem of prolog machine.

This expert system itself can have enough intelligence to

answer gene network problems.

In 1980’s, Japanese proposed the concept of

intelligent computers called fifth generation computers,

since they posses the superior robotic technology.

Prolog is expected to be utilized as major language in

this project. This hardware searcher proposed in the

paper can provide fast search among huge data volume.

Such search capability is desperately needed in the

deduce process of prolog machine. The most

significance of this searcher is trying to provide the key

technique which can overcome the bottleneck of next

generation intelligence computer systems. Therefore,

computers can be upgraded to “electronic brains”.

Since earlier computer developing stage, many

researchers had been devoted to study different search

algorithms. These algorithms are quite mutual. The cost

of B tree index structures [5, 6, 7] is depending on the

height of tree. B+ tree [8, 9] is a dynamic multi-level

index file which is designed for very large files. But B+

tree is a one-dimensional access method. Search

performance can be improved by using parallel

technique and tree maintaining cost is too high.

The distributed and parallel architecture becomes

the trend of computer technology when double core

processor is popular in the market. Parallel search

algorithms, such as R tree [10, 11, 12] and other

A00431

algorithms [13, 14, 15, 16], had been explored. But they

still have overhead on maintaining tree and performance

improvement is limited. Because, it is difficult to allow

all processors involving on searching distributed data in

each search step. The complexity and overall cost for

this kind of hardware searcher is just too high to build.

In the proposed parallel hardware search machine,

one of m processors has to enter into a rest state. The

performance of this system is almost unaffected when m

is becoming large. However, each processor can only

process data in his memory location, and virtual search

tree can be adopted in this machine. The cost of

maintaining tree can be eliminated completely. The

hardware of searcher can be easily designed by using

FPGA chips. The performance of searcher can be

dramatically increased at low production cost.

The remaining paper is divided into three main

sections. Research projects of biocyc are introduced in

Section 2. The pathway/genome expert system is

designed in Section 3. The design of this parallel

hardware searcher is given in Section 4.

2. Research projects of biocyc

The biocyc pathway/genome databases contain

more than 160 databases, including: ecocyc, metacyc.

The ecocyc is a model organism database for

Escherischia coli K-12. The ecocyc project has

integrated information on the E. coli genome, and on the

E. coli metabolic and genetic networks from more than

11,000 publications. The metacyc is an encyclopedia of

experimentally elucidated metabolic pathways and

enzymes derived from 450 organisms.

Pathway Tools Architecture

Object DBMS

GFP APIGFP API

Pathway

Genome
Navigator

WWW

Server

WWW

Server

X-Windows

Graphics

X-Windows

Graphics

Object Editor
Pathway Editor
Reaction Editor

Object Editor
Pathway Editor
Reaction Editor

OracleOracle

Figure 1. The overall architecture of biocyc.

Ocelot object database management system is

utilized to manage pathway/genome objects which are

named as frames. Common lisp is used as the native

language of pathway tools. Bio-Loader is the interface

program between lisp and databases. Many utility

functions are developed by using lisp. Pathway tools

provides querying capabilities, visualization tools such

as for drawing pathways and genome maps, and

interactive editing tools to allow users to update data

such as modifying a metabolic pathway or defining a

new DNA binding site for a transcription factor. The

visualization and querying capabilities allow PGDBs to

be published on the Web, or to be accessed as a desktop

application on a PC.

3. Design a gene network expert system

using a specific prolog machine

The overall architecture of the expert system is

described in Section 3.1. Knowledge representation for

gene network databases and programs is discussed in

Section 3.2. In Section 3.3, several commands are

implemented in the search module. The advantages of

prolog for implementing PGDB are given in Section 3.4.

3.1 The overall architecture of the expert

system

 The overall architecture of our specially designed

expert system is exhibited in Figure 2. Java language is

used as API to integrate SWI prolog interpreter and

search module. The gene network databases are

represented as prolog facts. All the programs that

process gene network databases are represented as

prolog rules and facts. These horn clauses are treated as

objects. Since recent cost reduction of DRAM, it is

reasonable to store all objects into DRAM in order to

increase data access time. The main functions in each

block are explained below:

Figure 2. The overall architecture of our

 prolog machine.

1. Java API: Java language can be embedded with

assembler language. Hence PC can directly store

objects into or access objects from DRAM. Java can

also input data files, goals or functionalities to

hardware module, and display text output file or

graphic data from prolog to GUI. PC can send a

number of commands to searcher using interface

addresses. These commands are: open pc and searcher

connection, close pc and searcher connection, search,

insertion, deletion, output result.

A00432

2. SWI prolog: SWI-Prolog has become a popular free

software implementation of the Prolog language. It is

formerly known as SWI at the University of

Amsterdam. The programmer’s environment has

contributed most to its popularity. Many expert

software developers adopt SWI prolog system and

expend effort on large portable prolog applications

where scalability, interfaces and networking are often

important characteristics.

3. JPI and functionality object library: JPL is the

interface program between search module and SWI

prolog interpreter. All the prolog objects of horn

clauses which are related to input goal are rapidly

searched and collected from DRAM using hardware

searcher. This set of horn clauses can be sent to SWI

prolog interpreter to perform, can also be store in

functionality object library. Therefore this

functionality can be directly accessed from library and

performed in SWI interpreter.

4. Search module: The architecture of parallel

hardware searcher is exhibited in Figure3. There are 9

Processor Units (PUs) and 9 corresponding modules

in the interface card of the search module. A number

of connection lines are constructed for the

communication among PUs. Each PU is

corresponding with one giga byte DRAM. Only a

small amount of qualified data needs to transfer to

SWI prolog for further procession. The performance

of the system can be dramatically increased to solve

the time consuming problems in implementing huge

and complex gene network databases.

Figure 3. The design of a parallel hardware

searcher.

3.2 Knowledge representation for PGDB

and relevant programs

When PC opens connection with searcher, PC can

store or retrieve gene network databases which are

distributed in 9 DRAM modules. Gene network

databases, including gene regulation network, signal

transduction network, metabolic network and protein

interacting network databases, can be stored in DRAM

as prolog fact objects.

This object database system can contains databases

from a number of organisms. The object databases of

each organism contain several tables, and each table can

have several index files which are convenient for data

retrieval. The database dictionary contains the

information of organism name, search attributes in each

table, the size of each table (N), maximum loop number

(
┌
 log m-1 N

┐
) and starting address of index file. It is

noted that index file is a binary relation that contains

two attributes: search attribute and object identifiers

(can be represented as physical address). Multiple value

attribute and referential information can be represented

as an array of object identifiers.

Many software programs can be written in prolog

rules and facts, such as: documentation cluster,

predicting pathway, predicting hole filler and operon,

applying gene network for different research purposes.

This type of objects is combined into a control database

file. The index file for these databases which contains

prolog function name and physical address can be

constructed for fast retrieval.

3.3 Implement commands in search module

The search command implementation steps are

described below:

DRAM

PU1

DRAM

PU2

DRAM

PU3

DRAM DRAM

PU8

DRAM

PU9

DRAM Interface Slot

Data Address

1 To 1

Switch

...

...

Switch Switch

A00433

1. PC opens the connection with searcher.

2. PC sends search command and three consecutive 64-

bit data to searcher. Two 64-bit data for search

criterion, and another 64-bit represents starting

address of index file, maximum loop number.

3. PC closes the connection with searcher, and start to

enter search loop.

4. The hardware of each PU performs the algorithm

discussed in next section. Search operation can be

completed within maximum loop number.

5. Searcher interrupts PC after completing the search

operation.

6. PC sends result command, then PU that finds the

required search value will transferred object physical

address, object size and qualified object number to

data bus. If no object is found, PU outputs the

address for insertion.

To implement insertion, search the insertion value

first. If criterion is found, physical address to insert will

be calculated and reported by using count value of same

function name. Otherwise, a PU will reports insert

address.

3.4 The advantages of prolog language

Several advantages of prolog program are:

1. Prolog has strong capability to represent knowledge

contained in natural language. Document clustering

can be well performed by prolog.

2. All the other language use interface program to

access databases. Databases are represented as

prolog facts. Hence databases are a part of program

and data access and processing is much easier.

3. Instead of writing all the detailed program steps, only

logic rules are required in prolog. It will reduce the

program developing cost, and has good capability

for implementing complex programs.

4. Program size is greatly reduced, comparing with

program size of other language.

5. The prolog program is considered as knowledge

bases of expert system. The system using prolog has

better intelligence than the system developed using

other language.

 The major disadvantage of prolog program is that this

program requires fast searching capability over huge

amount of knowledge bases. Parallel hardware searcher

can be specially designed to overcome such

disadvantage.

4. Design a parallel hardware searcher

Search is implemented by using an example in

Section 4.1. Insertion and deletion is processed in

Section 4.2. Search algorithm is given in Section 4.3.

4.1 Implement search operation

Let N represent the data size and m represent total

processor number. N data is ordered according to search

key values and distributed to m processors' memories. N

is 64 and m is 5 in the example shown in the Figure 4. It

is noted that each Location k (where k is between 1 and

64) contains a search key value and k is merely

sequence ordered number. Pi is the i-th processor where

i is between 1 and m. Therefore, the relationship among

k, m and i is found: k MOD m = i. In another words, if

we want to know the search key value of location k, then

this value can be found in the memory of processor Pi.

The search key values of data can be sorted and

distributed by using a hardware sorter. At initial, host

sends BlockSize = 64, UpperBound = 64, m = 5, height

=
┌

 log m-1 N
┐

 = 3 and path = 4 to all processors. This

search example can be completed in 3 levels with 3

comparisons in worst case. If search value is found

earlier by a processor, this processor will broadcast stop

signal to all processor. Assume the search criterion can

be found at Location = 38. The proposed algorithm can

be described on detail below:

Figure 4. Distributing ordered data into

multiple processor units for searching.

1. At level 1, all processor will process BlockSize =

BlockSize / (m-1) = 16, UpperBound = 64 and

UpperBound MOD m = 4. Therefore, all

processor know P4 represents path = 4 with

location = 64. Since level number is odd,

processor numbers must be increasing when

corresponding path numbers are increasing. Each

processor can calculate his representing path and

the location to retrieve data. In Figure 5, P1~P4

represents path 1~4, and P5 must take a rest

(represents path 0). P1~P4 will retrieve data at

A00434

location 16, 32, 48 and 64. Finally P3 finds that

the search criterion is in his range, and broadcast

path = 3 to all processors.

2. At level 2, BlockSize = 4, UpperBound = 48 and

UpperBound MOD m = 3. P3 represents path = 4

with location = 48. Since level number is even,

processor numbers must be decreasing when

corresponding path numbers are increasing. Each

processor can calculate his representing path and

the location to retrieve data. In Figure 5, P1, P5,

P4, P3 represents path 1~4, and P2 must take a rest.

P1, P5, P4 and P3 will retrieve data at location 36,

40, 44 and 64. P5 finds that the search criterion is

in his range, and broadcast path = 2 to all

processors.

3. At level 3, BlockSize = 1, UpperBound =40 and

UpperBound MOD m = 0. P5 represents path = 4

with location = 40. Level number is odd again. In

Figure 5, P2, P3, P4 and P5 represents path 1~4,

and P1 must take a rest. P2, P3, P4 and P5 will

retrieve data at location 37, 38, 39, and 40. P3

finds that the search criterion at location 38, and

broadcast a stop signal to all processors.

4.2 Implement insertion and deletion

Assume communication links are existent between

every two adjacent processors. Hence, data can rotate

left or right among m processors. To implement

INSERT operation, search and find the location to insert

is Location = d. All processors must rotate data right

one location from Location = N to Location =d. Then

insert the data into Location=d. The detailed algorithm

for all processor Pi (where1 <= i <= m) is given in the

following section. To implement DELETE operation,

search the data for deleting and find the location to

delete is Location = d. All processors must rotate data

left one location from Location d+1 to Location N.

Figure 5. The virtual tree of parallel

hardware searcher.

4.3 The virtual tree parallel search

algorithm

/* At beginning, host sends N = 64, m = 5, HEIGHT =
┌
 log m-1 N

┐
 = 3 to all processors. */

BlockSize = N; /* Set up initial values. */

UpperBound = N;

DEC _ m = m-1;

PATH = Dec _ m ;

LEVEL = 1;

/* Start to perform the operations in each level. */

while (LEVEL <= HEIGHT)

{

UpperBound = UpperBound - BlockSize *

(DEC_m – PATH);

j = UpperBound MOD m;

/* Find the processor Pj represents PATH = DEC_m. */

BlockSize = BlockSize / DEC _ m;

/* New block size is used in this level. */

if (Level is odd)

{

if (i <= j) {PATH= i +Dec _ m – j; }else {PATH

= i – j –1; }

};

A00435

else {

if (i >= j) {PATH = Dec _ m + j - i; }else

{PATH = j – i –1;};

 };

 /* Pi represents path number in PATH. */

if (Path ==0) {Pi takes a rest; }

else { Location = UpperBound – BlockSize *

(Dec _ m – path);

};

/* Pi gets data from Location and compare with search

value. Pi sends STOP signal when criterion is found. If

Pi finds that criterion is located in his range, then Pi

broadcast his path to all processors. */

Level = Level+1;

};

5. Conclusion

 A gene network expert system had been designed

using a prolog machine that is incorporated with a

parallel hardware searcher. Gene network databases

were represented as facts, and the programs were

presented as both rules and facts. All the facts and rules

are treated as objects and stored in DRAM to increase

access time. Java has been used to integrate the whole

system. Only a small amount of qualified data needs to

transfer to PC for further procession. This searcher can

readily solve time consuming problem in prolog system.

This expert system itself cam have enough intelligence

to answer gene network problems.

6. Reference

 [1] R. Caspi, and etc., “MetaCyc: A multiorganism

database of metabolic pathways and enzymes”, Nucleic

Acids Res, Volume 34. pp. 511-516, 2006.

[2] P. Karp, S. Paley, and P. Romero "The pathway

tools software", Bioinformatics, Volume 18. S225-S232

2002.

[3] T. Schrijvers, J. Wielemaker and B. Demoen,

“Constraint handling rules for SWI-prolog”, Workshop

on (Constraint) Logic Programming, Ulm, February,

2005.

[4] J. Wielemaker and A. Anjewierden. “An

architecture for making object-oriented systems

available from Prolog”. In Alexandre Tessier, editor,

Computer Scienc, abstract 2002. http:// lanl.arxiv.org

/abs /cs.SE /0207053.

[5] R. BAYER and C. MCCREIGHT, "Organization

and maintenance of large ordered indexes", Acta Inf.

Volume 1, No.9, pp. 173-189, 1972.

[6] D. Lomet. " The evolution of effective B-tree: page

organization and techniques: A personal account", ACM

SIGMOD Record, Volume 30(3), pp. 64-69, Sep. 2001.

[7] T. Johnson and D. Sasha, "The performance of

current B-tree algorithms", ACM Transactions on

Database Systems (TODS), Volume 18 , Issue 1, pp. 51-

101, March 1993.

[8] S. Chen, P.B. Gibbons, T.C. Mowry and G. Valentin,

 "Fractal prefetching B+-Trees: optimizing both cache

and disk performance", Proceedings of the ACM

SIGMOD international conference on Management of

data, 2002 , Madison, Wisconsin.

[9] S.W. Kim , H.S. Won, "Batch-construction of B+-

trees", Proceedings of the 2001 ACM symposium on

Applied computing, pp. 231-235, March 2001.

[10] A. Guttman "R-trees: A dynamic index structure for

Spatial Searching", Proceedings of the ACM SIGMOD,

pp. 47-57, June 1984.

[11] T. Sellis, N. Roussopoulos, and C. Faloutsos. "The

R+ Tree: A dynamic index for multi-dimensional

Objects", Proceedings of the 13th VLDB Conference,

1987.

[12] B. Wang, H. Horinokuchi, K. Kaneko and

A. Makinouchi , "Parallel R-tree search algorithm on

DSVM", Proceedings sixth International Conference

on Database Systems for Advanced Applications, pp.

237-244, April 1999.

[13] S. Gerard and B. Chris, "Parallel text search

methods", Communications of the ACM, Volume 31,

Issue 2, pp. 202-215, February 1988.

[14] M. Sergey, R. Sriram, Y. Beverly and G.M. Hector,

"Building a distributed full-text index for the web",

ACM Transactions on Information Systems (TOIS),

Volume 19 , Issue 3, pp.217-241, July 2001.

[15] P. Sakti and H.K. Myoung, "Parallel processing of

large node B-trees", IEEE Transactions on Computers,

Volume 39, No.9, pp.1208-1212, September 1990.

[16] M.A. Torres, S. Kuroyanagi and A. Iwata, "A fast

parallel search method for large dictionaries",

Proceedings of International Symposium on Software

Engineering for Parallel and Distributed Systems, pp.

207 -214, 1998.

A00436

