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Abstract
Purposes: Lipopolysaccharide (LPS) is one of the major substances initiating the immune host response in microbial
infections that results in cytotoxicity. In terms of treatment of the immune response, research has been conducted on
physical environments that can reduce LPS-induced damage. In this experiment, a long-term continuous static magnetic
field (SMF) was used as a physical resource to reduce LPS-induced immune host response.
Materials and methods: Cultured fibroblasts were challenged with LPS to initiate an inflammatory reaction. Cell viability
and various proinflammatory cytokine levels were detected and compared between SMF and sham-exposed groups.
Results: Our in vitro study revealed that, with LPS challenge, fibroblasts continuously exposed to a 0.4-T SMF for 12 h
demonstrated higher cell viability compared to unexposed analogs. From cytokine test, the levels of LPS-induced
interleukin-1b (IL-1b) in the SMF-exposed groups were significantly lower relative to their unexposed counterparts
(p5 0.05). By contrast, SMF exposure tended to increase the level of LPS-induced IL-1 receptor antagonist (IL-1Ra) and
IL-6.
Conclusions: Our results suggest that SMF stimulation inhibits LPS-induced cytotoxicity through reduction of
proinflammatory cytokines and increase in anti-inflammatory cytokines of NIH-3T3 cells.
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Introduction

Clinical observations have indicated that the mortal-

ity rate from septic shock has increased from 28 –

50% in the past few decades (Natanson et al. 1998,

Wang et al. 2003). Given this reduction in an already

low survival rate, investigation into the treatment and

prevention of bacterial infections is increasingly

important. Traditionally, administration of antibio-

tics has been the major treatment strategy for

bacterial infections; however, the risk of antibacterial

resistance has been widely stated (Bernstein et al.

2006).

When bacteria are phagocytosed by macrophages,

they are degraded in phagosomes. After the frag-

ments of the digested microbes are released, they

become cytokine-releasing activators of host cells.

The Gram-negative bacterial cell wall component,

lipopolysaccharide (LPS), is the major cause of

multiple organ dysfunction syndrome and period-

ontitis (Page 1991, Agarwal et al. 1995). It also

triggers the release of inflammatory cytokines by host

cells, as mentioned above (Hermann et al. 2002,

Mathiak et al. 2003). It is now well known that the

co-receptor of LPS formed by the Toll-like receptor

4 (TLR4) and CD14 is the binding site for signaling

LPS-induced cytotoxicity (Dziarski et al. 1998, Jiang

et al. 2000).

Endotoxin tolerance is a phenomenon of decreas-

ing immune response during challenge by lethal

endotoxins (such as LPS) after repeated low-level

administration (Greisman et al. 1996, West & Heagy

2002). Although the subject of years of investigation,

clinical applications of endotoxin tolerance for

microbial infections remain unavailable because it

is very difficult to accurately control the location and
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concentration of the low-level LPS injection. Thus, a

new method is needed with the same attenuation

effects on inflammatory damage as endotoxin toler-

ance without the requirement for low-concentration

endotoxin injection.

Further, it is known that the physiological behavior

of many tissues changes in response to variations in

mechanical force (Mullender et al. 2004, Wang &

Thampatty 2006). The major cellular component

involved in this mechanotransduction mechanism is

the cell membrane (Wang et al. 1993). It has also

been reported that a static magnetic field (SMF)

changes the structure of cell membranes, affecting

ion channels and the avidity between ligands and

their receptors (Pacini et al. 1999, Sakurai et al.

1999).

An SMF is one type of magnetic field used in a

variety of clinical practice, especially oral dentistry

(Darendeliler et al. 1995, Riley et al. 2001), and for

pain relief (Eccles 2005). Recently, numerous

investigations have focused on the effects of con-

tinuous SMF on inflammatory responses in animals

(Weinberger et al. 1996) and on cytokine release by

human peripheral blood mononuclear cells (Aldi-

nucci et al. 2003). However, the effects of SMF on

proinflammatory cytokines remained unknown until

recently. Salerno et al. (1999) investigated the effects

of 0.5-T static magnetic fields on the expression of

activation markers and interleukin release in human

peripheral blood mononuclear cells (PBMC). Their

results show, for the first time, that exposure to the

SMF of a commercially available 0.5-T MRI unit

may induce modifications in the release of some

interleukin in PBMC.

In this experiment, therefore, long-term contin-

uous static magnetic fields were used as a physical

resource to attenuate LPS-induced immune host

response.

Materials and methods

Cell culture

In this study, NIH-3T3 fibroblast cells (American

Type Culture Collection 60008) were utilized for all

in vitro tests. The cells were maintained in Dulbec-

co’s modified Eagle’s medium (HyClone, South

Logan, UT, USA), supplemented with L-glutamine

(4 mM), 10% fetal bovine serum (FBS), and 1%

penicillin-streptomycin (HyClone, South Logan,

UT, USA). Cells were seeded in Petri dishes

(Nunclon, Nunc, Rochester, NY, USA) at a density

of 10,000 cells/ml. Cultures were incubated in 5%

CO2 at 378C and 100% humidity. Before conflu-

ence, the cell monolayer was washed three times

with phosphate-buffered saline (PBS), and detached

with 0.25% trypsin/ethylenediaminetetraacetic acid

(EDTA) for 10 min at 378C. The cell suspensions

were centrifuged at 2000 g for 5 min at 258C, and

the supernatant was discarded. The pellet was then

resuspended in culture medium for subculture.

SMF exposure

The cultured 3T3 cells were divided into control and

SMF-exposed groups and then incubated inside two

identical incubators (RCO3000TABB, Revco, Ashe-

ville, NC, USA). A neodymium (Nd2Fe14B) mag-

net with a flux density of 0.4 T was used to produce

the SMF. The average surface magnetic flux density

(Figure 1) was monitored using a Gauss meter

(Model 5070, FW BELL, Orlando, FL, USA). For

all exposure experiments, four 3.5-cm culture dishes

were placed directly on the north surface of the

permanent magnet, with unmagnetized neodymium

disks placed in a second identical incubator for the

controls. The permanent magnets produced ununi-

form magnetic fields over their surface, with the

highest value at edge and the lowest value at the

centre of the magnets (Figure 1). Though tested cells

in the same Petri dish were exposed to different flux

densities, the exposed conditions are the same for the

four Petri dishes because the distributions of

magnetic flux densities are symmetrical according

to the centre of the magnet.

The control cells were placed on the nonmagnetic

disks at the same time as their experimental counter-

parts. The background flux density in the control

incubator was no greater than the natural magnetic

field of the earth (0.05 mT). For all experiments, the

Figure 1. Schematic representation showing the relative size of the

Petri dishes and magnets used in this study. In the lower part of the

diagram, the solid line shows the distribution of magnetic field

intensity over the upper surface of the magnet.
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cells were incubated in an unexposed environment

for 24 h after plating onto culture dishes. The SMF-

exposure cells were then placed onto the magnet,

with this defined as time point 0 h for all tests.

LPS challenge

A series of assays was conducted to test the effects of

the SMF on LPS-induced cytotoxicity and inflam-

matory cytokine expression. Before the assay, the

cells were kept in serum-free medium for 12 h to

starve them. Then, the cells were washed twice with

ice-cold PBS, and incubated with three commer-

cially available LPS variants derived from Escherichia

coli (Ec), Pseudomonas aeruginosa (Pa) and Serratia

marcescens (Sm) (Sigma, St Louis, MO, USA), at

serial concentrations (range 0 – 160 mg/ml) for 12 h.

At observation time, cell viability was tested using the

MTT method. Briefly, test cells were incubated with

a tetrazolium salt (MTT) according to the supplier’s

instructions (MTT kit, Roche Applied Science,

Mannheim, Germany). After adding the coloro-

metric substrate for 4 h, viable cells converted the

MTT salt to a water-insoluble formazan dye. After

solubilizing the formazan dye with 500-ml Dimethyl

sulfoxide (DMSO) for 5 min, the dye was quanti-

tated using a microplate reader (Model 2020, Anthos

Labtec Instruments, Eugendorf , Wals, Austria) at

570/690 nm, with absorbance directly correlated to

cell number.

Inflammatory responses assay

In this study, the 50% toxicity concentration, TC50,

was defined as that which caused cells to grow

around 50% more than the control group. In the

further inflammatory response assay, both the SMF

and sham-exposure cells were subjected to the LPS

treatments at their respective TC50.

The effects of SMF on expression of inflammatory

cytokine (IL-1a, IL-1b, IL-1Ra and IL-6) by the LPS

challenged cells were determined using an Enzyme-

Linked Immunosorbent Assay (ELISA, R & D

System Inc., Minneapolis, MN, USA). Further, to

test the differences in growth with and without SMF

treatment, cell viability was detected using the MTT

method as mentioned above. Moreover, to compare

the morphologies of the NIH-3T3 cells in each

experimental group, cell images were recorded

before the cell number assay. For each group, four

samples were prepared and five areas within a sample

were examined.

Statistical analysis

All data measured are presented as mean+ standard

deviation (SD) for four samples. For all assays, the

Student’s t-test was used to assess the differences

between the control and SMF-exposed cells, with

p5 0.05 considered statistically significant for all

tests.

Results

LPS-induced cytotoxicity assay revealed that NIH-

3T3 cells challenged with the various LPS types

showed a trend to decreasing cell viability (Figure 2).

When the Ec, Pa and Sm LPS concentrations

reached 40, 10 and 30 mg/ml, the detected

optical density (0.101+ 0.016, 0.104+ 0.003 and

0.111+ 0.014, respectively) was almost half that of

the control counterparts. Thus, in the following

experiments, the TC50 was defined as 40, 10 and

30 mg/ml for Ec, Pa and Sm, respectively.

We found that the SMF inhibited LPS-induced

cytotoxicity and proinflammatory cytokine release.

An example of the morphological changes in the test

cells treated with Ec-LPS is presented in Figure 3.

The untreated control cells were evenly distributed

and appeared to form a relatively compact, contin-

uous monolayer (Figure 3A). When cells were

exposed to the SMF, no obvious changes in

morphology were observed in the controls (Figure

3B). As a result of LPS treatment, however, the

number of NIH- 3T3 cells decreased, and abundant

cellular debris was noted in the medium. By contrast,

the morphology of the LPS-challenged cells changed

from polygonal to more-rounded relatively thin

shapes (Figure 3C). Interestingly, when LPS-

challenged cells were cotreated with 0.4-T SMF, a

greater number of viable cells and less debris were

observed compared to the unexposed cultures

(Figure 3D). Similar results were also revealed in

the Pa and Sm-LPS experiments. Statistically sig-

nificant differences in cell viability were not demon-

strated when cells were exposed to the SMF without

LPS treatment (Figure 4). When Ec, Pa or Sm-

derived LPS was added to the serum-free medium,

the detected optical densities decreased significantly

to 47.7, 52.7 and 51.4% of the control values,

respectively. However, SMF exposure significantly

reduced LPS-induced cytotoxicity (p5 0.05). With

Ec, Pa and Sm LPS treatment, the optical densities

of the SMF-exposed cells were 1.35, 1.35 and 1.22-

fold higher, respectively, than the unexposed cultures

(p5 0.05).

The effects of the SMF on LPS-induced proin-

flammatory cytokine production were tested by co-

culturing the cells with the three types of LPS for

12 h. The LPS treatments significantly increased IL-

1b and IL-6 production, (Figure 5A, 5B), however,

significant effects on the production of IL-1a and IL-

1Ra were not demonstrated (Figure 5C, 5D). The

effects of SMF on LPS-induced cytokine release
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varied between the four cytokines. IL-1b release

from SMF-exposed cells remained at low levels,

without significant changes demonstrated in any of

the tests. In contrast, when cells were exposed to

SMF, the detected IL-1b significantly decreased in

all experimental groups compared to the unexposed

cells (p5 0.05). However, IL-1Ra production in the

SMF-exposed cells, compared to sham-exposed

groups, was significantly increased (1.88, 1.99 and

1.74-fold) for the Ec, Pa and Sm-treated groups,

respectively. Similar results are found in IL-6

detection. Cells exposed to SMF produced signifi-

cantly larger quantities of IL-6 (170.1+ 25.3 and

240.4+ 29.6 pg/ml in Ec and Sm tests, respectively)

compared to those of their unexposed counterparts

(132.2+ 13.6 and 166.7+ 15.2 pg/ml in Ec and Sm

co-cultured tests, respectively). For each type of

LPS, SMF treatment revealed no significant effect

on IL-1a production in the test cells.

Discussion

LPS-induced cytotoxicity assay of NIH-3T3 cells

challenged with LPS revealed decreasing trends in

cell density (Figure 2). The TC50 of the lipopoly-

saccharides from the three studied bacterial sources

was different. This variation can be attributed to the

structure of the specific LPS molecules. Previous

study has demonstrated that LPS purified from

various bacterial sources is distinguished by differ-

ences in the structure of lipid A as well as the

polysaccharide chain (Agarwal et al. 1995).

Cytokines, such as IL-1a and IL-1b can exert

strong inflammatory effects during bacterial infection

(Agarwal et al. 1995, Hermann et al. 2002, Mathiak

et al. 2003). These factors, which are expressed in

the infection period, induce severe inflammatory

responses. In this study, 12-h continuous SMF

Figure 2. Cytotoxic effects of Ec (A), Pa (B) and Sm (C) – drived

LPS on NIH-3T3 cells at different concentrations; LPS concen-

tration is inversely related to cell viability. The star signs denote

the TC50 concentrations used for the other experiments. Error

bars indicate the standard deviation of the mean for n¼6

independent experiments.

Figure 3. Microscopy of SMF-treated and untreated NIH-3T3

cells. (A) Untreated cells are characterized by a relatively

abundant, continuous monolayer; (B) No obvious changes in

morphology comparing control cells to the SMF-exposed analogs;

(C) Morphologically, the lipopolysaccharide (LPS)-treated cells

changed from polygonal to a relatively round shape; (D) The SMF

tended to reduce LPS-induced cytotoxicity (magnification 6100).
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stimulation tended to prevent increased IL-1b
production (Figure 5A). These results can be

compared with the microscopic observations (Figure

3) and cytotoxicity assay (Figure 4), which show that

development of endotoxin tolerance in the NIH-3T3

cells occurred after 12 h of continuous 0.4-T SMF

exposure.

A member of the IL-1 family, IL-1Ra is produced

mainly by monocytes and macrophages after LPS

stimulation (Dinarello 1998). Clinical findings in-

dicate that administration of IL-lRa reduces patho-

logical processes such as septic shock and

inflammatory disease (Tilg et al. 1997, Ashdown

et al. 2007). Therefore, it is an anti-inflammatory

cytokine due to its ability to bind to the IL-1a and

IL-1b (Dinarello 1998).

According to previous study, fibroblasts also

respond to IL-lRa. For example, in cultured fibro-

blasts, PGE2 secretion due to IL-1a stimulation was

inhibited by the presence of IL-1Ra (Portnoy et al.

2006). Furthermore, fibrotic lung disease could be

attenuated by inhibition of IL-1b with IL-1Ra in

animal models (Piguet et al. 1993). In this study, we

found that long-term continuous SMF treatment

increases the IL-1Ra production in LPS-challenged

cells (Figure 5C). The reduction in LPS-induced

cytotoxicity with SMF treatment can be attributed to

the anti-inflammatory effect of SMF-induced IL-1Ra

production (Figure 4).

IL-6 was initially classified as a proinflammatory

cytokine, mainly because it increases in the early

stage of infection. However, in vitro cell culture

(Ulich et al. 1991) as well as animal studies

(Mizuhara et al. 1994, Matthys et al. 1995) have

demonstrated that IL-6 inhibits TNF-a production

and increases the level of IL-1Ra (Tilg et al. 1994).

In a clinical study, Steensberg et al. (2003) found

that low-dose recombinant human IL-6 infusion

increased plasma levels of the anti-inflammatory IL-

1Ra. They concluded that physiological concentra-

tions of IL-6 induce an anti-inflammatory rather

than an inflammatory response in humans. Accord-

ingly, it has recently been suggested that IL-6 should

be classified as an anti-inflammatory cytokine (Fiers

1991, Xing et al. 1998).

In this study, long-term continuous SMF stimula-

tion tended to increase IL-6 production (Figure 5B).

The fact that IL-6 protects against LPS-induced

damage (Aderka et al. 1989, Schindler et al. 1990,

Barton & Jackson 1993), possibly suggests that IL-6,

dependently of SMF, induces IL-1Ra and suppresses

excess inflammatory response in LPS-treated cells.

Low-dose radiotherapy has been used to clinically

demonstrate anti-inflammatory effects via modula-

tion of cytokine production from inflammatory-

responding cells (Rodel et al. 2007). However, due

to the problem of dose-accumulation, the efficacy of

long-term treatment with low-dose radiotherapy

remains doubtful. As SMF does not involve ionizing

radiation, this makes it potentially useful in clinical

practice. Furthermore, utilization of a permanent

magnet for stimulation obviates the need for an

Figure 4. Cytotoxic effects of Ec (A), Pa (B) and Sm (C)-derived

LPS on NIH-3T3 cells were significantly reduced with long-term

continuous exposure to static magnetic field. (M, SMF exposure,

error bars indicate the standard deviation of the mean for n¼4

independent experiments; *p50.05).
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external energy source and the attendant leads,

making SMF stimulation more suitable for long-

term local healing. Although modification of proin-

flammatory cytokine release was not detected with

short-term SMF exposure (1 – 4 h) (Salerno et al.

1999, Aldinucci et al. 2003), we found that the long-

term continuous variant has an attenuation effect on

immune response of LPS-challenged fibroblasts.

Based on our results, it appears that the possible

mechanism of this preventive effect occurs via down-

regulation of proinflammatory cytokines and up-

regulation of anti-inflammatory cytokines.

Phospholipids are oriented by the external mag-

netic fields when their flux densities exceed a certain

threshold (Aoki et al. 1990, Suda & Ueno 1994)

resulting in distortion of the cellular membrane and

alteration of the biological properties of receptors

imbedded in the membrane and, thereby, altering

cellular protein expression (Feinendegen & Muhlen-

siepen 1987, Coots et al. 2004).

Based on these observations, it appears reasonable

to suggest that SMF stimulation inhibits LPS-

induced cytotoxicity by reducing the release of

proinflammatory cytokines and increasing anti-

inflammatory cytokine release of in NIH-3T3 cells.
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