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Abstract

Heme oxygenase-1 (HO-1) is induced as a beneficial and adaptive response in cells and tissues exposed to

oxidative stress. Herein we examined how various eicosanoids affect the induction of HO-1, and the possible

mechanism underlying 15-deoxy-D12,14-prostaglandin J2 (15d-PGJ2)-induced HO-1 expression. PGH2, PGD2

and its metabolites of the PGJ2 series, and PGA1 markedly induced the protein expression of HO-1.

Arachidonic acid (AA), docosahexaenoic acid (DHA), PGE2, PGF2a, and thromboxane B2 (TXB2) were shown

to have no effect on the induction of HO-1. 15d-PGJ2 was the most potent activator achieving significance at

5 AM. Although 15d-PGJ2 significantly activated the MAPKs of JNK and ERK, the activation of JNK and

ERK did not contribute to the induction of HO-1 as determined using transfection of dominant-negative

plasmids and MAPKs inhibitors. Additional experiment indicated that 15d-PGJ2 induced HO-1 expression

through peroxisome proliferator-activated receptor (PPAR)-independent pathway. 15d-PGJ2 significantly

decreased the intracellular level of reduced glutathione; and the thiol antioxidant, N-acetyl-L-cysteine

(NAC), and the thiol-reducing agent, dithiothreitol (DTT), inhibited the induction of HO-1 by 15d-PGJ2.

Finally, NAC and DTT exhibited significant inhibition of HO-1 mRNA and HO-1 promoter reporter activity

induced by 15d-PGJ2. These results suggest that thiol antioxidant and reducing agents attenuate the expression
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of HO-1 induced by 15d-PGJ2, and that the cellular thiol-disulfide redox status may be linked to HO-1

activation.
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Introduction

Heme oxygenase (HO, EC 1.14.99.3) is a microsomal enzyme that catalyzes the initial and rate-

limiting reaction in heme catabolism, which converts heme to biliverdin and releases equimolar amounts

of carbon monoxide (CO) and free iron (Maines, 1997; Ponka, 1999). Three isoforms transcribed from

separate genes have been characterized. HO-1 is an inducible form found in large guantities in the liver

and spleen, and HO-2 is a constitutively active form found mainly in the brain and testes (McCoubrey

and Maines, 1994). Another HO isoform, HO-3, has only recently been described with properties similar

to those of HO-2 (McCoubrey et al., 1997). Poss and Tonegawa (1997a,b) showed that HO-1-deficient

mice are hypersensitive to cytotoxicity when given additional hydrogen peroxide, indicating that HO-1

plays an important role in the cytoprotective defense response against oxidative stress (Choi and Alam,

1996). HO-1 gene expression is upregulated by both inflammatory mediators and anti-inflammatory

cytokines, such as LPS, IL-1h, and IL-10 (Yet et al., 1997; Lee and Chau, 2002). However, much

evidence has suggested that upregulation of HO-1 contributes to the anti-inflammatory action of cells

and tissues. Minamino et al. (2001) demonstrated that HO-1 transgenic mice are protected from

pulmonary inflammation and vessel wall hypertrophy induced by hypoxia. CO, a product of HO, inhibits

the expression of LPS-induced proinflammatory cytokines (Muller et al., 1987), and the anti-inflam-

matory interleukin-10 mediates the induction of HO-1 (Lee and Chau, 2002).

Arachidonic acid is first converted to PGH2 by cyclooxygenase and subsequently converted to one of

several related products, including PGD2, PGE2, PGF2a, PGI2, and thromboxane A2, through the action of

specific PG synthases. 15d-PGJ2 is derived from PGD2 and involves the sequential conversion of PGD2,

PGI2, D
12-PGJ2, and 15d-PGJ2 (Fukushima, 1992). Several proteins have been identified which are

induced by cyclopentenone PGs, such as heat shock proteins (Santoro et al., 1989), g-glutamylcysteine

synthetase (Ohno et al., 1990), collagen (Tasaki et al., 1991), gadd 45 (Ohtani-Fujita et al., 1998), and

heme oxygenase (Koizumi et al., 1995). Although their intracellular receptor has not been described, 15d-

PGJ2 was shown to be a high-affinity ligand for peroxisome proliferator-activated receptor g (PPARg)

(Kliewer et al., 1995). Recently, PPARg has been considered to have anti-inflammatory actions through

activation by arachidonic acid metabolites, such as 15d-PGJ2 (Jiang et al., 1998; Ricote et al., 1998, 1999).

15d-PGJ2 represses several genes related to inflammation, including the inducible nitric oxide synthase

(iNOS) and tumor necrosis factor a (TNFa) genes in activated macrophages (Ricote et al., 1998).

However, the repression is partly dependent on PPARg expression (Chawla et al., 2001), and receptor-

independent biological actions of 15d-PGJ2 and other cyclopentenone PGs have been proposed (Rossi et

al., 2000; Straus et al., 2000). Other studies have indicated that some cyclopentonene PGs induce the

synthesis of HO-1 in cells of the mice and rat, but the mechanism underlying 15d-PGJ2-induced HO-1

protein synthesis in human cells has been largely unexplored.We report herein that PGD2, PGA1, and the J

series of PGs markedly induced HO-1 protein synthesis in human HepG2 hepatoma cells, and that the

induction of HO-1 by 15d-PGJ2 may bemediated bymodulation of the cellular thiol-disulfide redox status.
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Materials and methods

Materials and cell culture

DHA, PGA1, PGJ2, 16,16-dimethyl PGD2, and BRL49653 were purchased from Cayman Chemical

(Ann Arbor, MI), while arachonidic acid, PGD2, PGE2, PGF2a, PGH2, TXB2, 15d-PGJ2, PD98059,

SB203580, 2V,5V-dideoxyadenosine, WY-14643, ciglitazone, and indomethacin were purchased from

Biomol (Plymouth Meeting, PA). Vitamin C, vitamin E, allopurinol, NAC, wortmannin, and DTT were

purchased from Sigma Chemical (St. Louis, MO). The human HepG2 hepatoma cell lines were cultured

in MEM containing 10% heat-inactivated fetal bovine serum and 1 mM sodium pyruvate (Invitrogen,

Carlsbad, CA).

Western blot analysis

Equal amounts of total cellular protein (50 Ag) were resolved by SDS-polyacrylamide gel electro-

phoresis (PAGE), transferred onto an Immobilon-P membrane (Millipore, Bedford, MA), and blotted

with anti-HO-1, anti-HO-2 (BD Biosciences, Franklin Lakes, NJ), anti-JNK1, anti-ERK1 (Santa Cruz

Biotechnology, Santa Cruz, CA), or anti-PPARg (Affinity BioReagents, Inc., Golden, CO) antiserum as

described previously (Liang et al., 1999a).

Reverse-transcription polymerase chain reaction (RT-PCR)

Total RNAwas isolated from both the control and tested cultured cells, and RT-PCR was performed as

previously described (Liang et al., 1999b). Two sets of primers were used to amplify the mRNA of HO-1

and HO-2: for HO-1, they were 5V-TGATAGAAGAGGCCAAGA-3Vand 5V-TTTCCAGAGAGAGG-
GACA-3V; and for HO-2, they were 5V-TGGAGCGCAACAAGGACCAT-3V and 5V-CCGGTA-
GAGCTGCTTGAACT-3V.

Kinase assay

Equal amounts of total cellular protein (200 Ag) were immunoprecipitated with JNK1-, p38-, or

ERK1-specific antibodies (Santa Cruz Biotechnology) and protein A/G-PLUS agarose for 12 h at 4jC.
The kinase assay was performed in kinase buffer with Gst-c-Jun fusion protein (for JNK), Gst-ATF2 (for

p38), or myelin basic protein (for ERK) as substrates as previously described (Liang et al., 1999b).

Plasmids and transition transfection

The dominant-negative (DN)-ERK1 expression plasmid was generously provided by Prof. Peter E.

Shaw, The University of Nottingham (Robbins et al., 1993), and the DN-JNK expression plasmid was

constructed from human JNK1 with a double-point mutation of Thr183 to Ala and Tyr185 to Phe (Lin et

al., 2002). The PPARg expression plasmid was generously provided by Professor Christopher K. Glass

(University of California-San Diego).

The pGL2/hHO3.2-Luc reporter plasmid, containing a 3292-bp fragment, -3106 to + 186 relative to

the transcription start site of the human HO-1 gene, was amplified from the human BAC clone CTA-
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286B10 (Kim et al., 1996) using the primers 5V-AGAGAACAGTTAGAAAAGAAAG-3V and 5V-
TACGGGCACAGGCAGGATCAGAA-3V. The PCR products were inserted into the pCR2.1-TOPO

cloning vector (Invitrogen), and cut with Kpn I/Xba I such that the resulting PCR products contained the

Kpn I/Xba I sites, and was ligated in-frame into the unique Kpn I/Nhe I sites present within the pGL2

plasmid (Promega, Madison, WI). Therefore, we obtained a pGL2/hHO3.2-Luc reporter construct

containing about a 3.2-kb region of the human HO-1 promoter driving luciferase gene expression.

Sequence identities were confirmed using an ABI PRISM 377 DNA analysis system (Perkin-Elmer

Corp., Taipei, Taiwan).

HepG2 cells were seeded in 60-mm dishes and either mock-treated or transfected with DN-JNK, DN-

ERK, or PPARg plasmid using LipofectAMINEk 2000 (Gibco) for 48 h (Liang et al., 2001). After

transfection, cells were then treated with 15d-PGJ2, and the cell lysate was collected for the kinase assay

or Western blot analysis. For the reporter plasmid assay, HepG2 cells were seeded in 6-well plates for 24

h. Then cells were transfected with the pGL2e-hHO3.2 reporter plasmid, and phRL-TK (Promega) as an

internal control using LipofectAMINE 2000k (Invitrogen). After 12 h of transfection, the medium was

replaced with complete medium and incubated for another 24 h. Transfected cells were then treated with

drugs for the luciferase activity assay. Each well was washed twice with cold PBS and harvested in 100

Al of lysis buffer (0.5 M Hepes, pH 7.8, 0.5% Triton N-101, 1 mM CaCl2, and 1 mM MgCl2). Then 75

Al of cell lysate was placed into a 96-well white plate, and the luciferase activity was determined using a

FireLitek luciferase reporter gene assay kit (Packard Instrument Co., Meriden, CT). Luciferase activity

was measured on a TopCount microplate scintillation and luminescence counter (Packard 9912V1) in the

single-photon counting mode for 3 s/well. Luciferase activities of reporter plasmids were normalized to

luciferase activities of the internal control plasmid.

Glutathione assay

Cells were washed twice with PBS, extracted with a 25% (w/v) metaphosphoric acid solution

containing 5 mM EDTA, and centrifuged at 12,000 rpm for 10 min to precipitate the proteins. The

supernatant was incubated with 5 mM EDTA and 100 Ag O-phthalaldehyde, and then the fluorescence

intensity was determined by excitation at 350 nm and emission at 420 nm (Kim et al., 2001).

Statistical analysis

Data are presented as the mean F S.E. for the indicated number of independently performed

experiments. Statistical analysis was done using one-way Student’s t test.
Results

Prostaglandins as potential HO-1 activators

To identify the endogenous activator of HO-1 expression, we screened a large number of lipophilic

chemicals, including DHA, arachidonic acid, and its metabolites, and found that HO-1 expression was

potently induced by some of the PG derivatives. As shown in Fig. 1A, the protein expression of HO-1 in

HepG2 cells was significantly induced by PGA1, PGH2 metabolites including PGH2 itself, PGD2, PGJ2,



Fig. 1. Effect of arachidonic acid, docosahexaenoic acid, and various eicosanoids on the protein expression of HO-1 in HepG2

cells. (A) Cells were treated with various compounds or (B) with arachidonic acid and 50 AM 16,16-dimethyl-PGD2 for 15 h;

HO-1 and HO-2 proteins were detected by Western blotting. 15d-PGJ2, 15-deoxy-D
12,14-PGJ2; AA, arachidonic acid; TXB2,

thromboxane B2.
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and 15d-PGJ2. The induction potency was 15d-PGJ2 > PGA1 PGJ2 > PGD2 > PGH2, with 15d-PGJ2
being the most potent activator. Arachidonic acid, DHA, PGE2, PGF2a, and TXB2 had no significant

effects on the induction of HO-1 expression. We examined the induction of HO-1 by PGD2 through its

metabolites, such as PGJ2 and 15d-PGJ2, in HepG2 cells. We used 16,16-dimethyl PGD2, a

metabolically stable synthetic analog of PGD2, to examine the induction of HO-1. As shown in Fig.

1B, 16,16-dimethyl PGD2 exhibited significant induction of HO-1 in HepG2 cells. The PG precursor,

arachidonic acid, failed to induce HO-1 expression up to a concentration of 100 AM. These results

suggest that PGD2 is not dependent on its metabolites, such as the J series of PGs, to induce the

expression of HO-1, and that HepG2 cells may lack the conversion enzymes which catalyze the

metabolites of arachidonic acid to PGH2 and PGD2.

Induction of HO-1 by 15d-PGJ2 does not mediate the MAPK and PPAR pathways

It has been demonstrated that activation of the MAPKs pathway contributes to the induction of HO-1

by cadmium and arsenite (Elbirt et al., 1998; Alam et al., 2000). To examine whether 15d-PGJ2 induces
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the expression of HO-1 through the MAPKs pathway, we performed the following experiments. 15d-

PGJ2 induced the expression of HO-1 in time- and dose-dependent manners (Fig. 2A). In the time-

dependent experiment, we found that 15d-PGJ2 was sufficient to activate JNK after 1.5 h. On the other

hand, 15d-PGJ2 slightly stimulated ERK activity at 6 h after drug treatment (Fig. 2B). To examine

whether MAPKs, including ERK, JNK, and p38, could influence HO-1 expression, we transfected cells



Fig. 3. Effect of PPAR agonists and overexpression of PPARg on the induction of HO-1 expression. (A). Cells were treated with

various PPAR agonists for 15 h, and the HO-1 and HO-2 protein expression were detected by Western blotting. WY, WY-

14643; Cig, ciglitazone; BRL, BRL49653; Indo, indomethacin. (B). Transfected cells were treated with or without 10 AM 15d-

PGJ2 for 15 h, and the HO-1 and PPARg protein expression were detected by Western blotting.
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with dominant-negative (DN) mutants of the JNK or ERK expression plasmid. As shown in Fig. 2C

(top), HO-1 levels were not significantly diminished by overexpression of the DN-JNK or DN-ERK. To

verify that overexpression of dominant-negative JNK or ERK efficiently decreased endogenous JNK or

ERK activities, we determined the total JNK and ERK activities by immunocomplex kinase assay. As

shown in Fig. 2C (middle and bottom), overexpression of the DN-JNK or DN-ERK significantly

decreased the JNK or ERK activity in the cells with or without 15d-PGJ2. In addition, the MEK

inhibitor, PD98059, and the p38 kinase inhibitor, SB203580, also exhibited an inefficient inhibition of

HO-1 induced by 15d-PGJ2. The immunocomplex kinase assay showed that ERK and p38 kinases

activities were significantly inhibited by their inhibitors PD98059 and SB203580, respectively (Fig. 2D,

middle and bottom). These data suggest that the induction of HO-1 by 15d-PGJ2 might not be mediated

by activation of the MAPKs pathway, and that there are clear differences between the activation

pathways of 15d-PGJ2 and the other treatments tested (cadmium and aresenite).
Fig. 2. Effect of MAPK pathways on the expression of HO-1 induced by 15d-PGJ2 in HepG2 cells. (A) Cells were treated with

10 AM 15d-PGJ2 for various times as indicated (top), or treated with various concentrations of 15d-PGJ2 for 15 h (bottom). The

total cell lysates was used to detect HO-1 and HO-2 proteins by Western blot. (B) Cells were treated with 10 AM 15d-PGJ2 for

various times as indicated, the total cell lysates was preformed the JNK (Gst-c-Jun as the substrate) and ERK (MBP as the

substrate) kinases activity assays as described in ‘‘Materials and methods’’. (C) Cells were transfected with mock, dominant-

negative (DN) JNK, or DN-ERK expression plasmid, and treated with 10 AM 15d-PGJ2 for 15 h. Total cells lysates was used to

detect the HO-1 protein was detected by Western blotting (top). Transfected cells were treated with 10 AM 15d-PGJ2 for 1.5 h

(middle) or 9 h (bottom), and determined the JNK (middle) and ERK (bottom) kinases activity assays as described in ‘‘Materials

and methods’’. (D) Cells were treated with 50 AM PD98059 or 10 AM SB203580 and 10 AM 15d-PGJ2 for 15 h, and the HO-1

protein was detected by Western blotting (top). Cells were treated with 50 AM PD98059 or 10 AM SB203580 and 10 AM 15d-

PGJ2 for 9 h, and determined the ERK (middle) and p38 (Gst-ATF2 as the substrate, bottom) kinase activity assays as described

in ‘‘Materials and methods’’.



Fig. 4. Effect of various inhibitors on the protein expression of HO-1 induced by 15d-PGJ2 in HepG2 cells. (A) Cells were

pretreated with various drugs or (B) with NAC or DTT for 2 h, and 10 AM 15d-PGJ2 was added for another 15 h. The HO-1

protein was detected by Western blotting NAC, N-acetyl-L-cysteine; DTT, dithiothreitol; Vit C, vitamin C; Vit E, vitamin E;

Allo, allopurinol; NAC, N-acetyl-L-cysteine; DDA, 2V,5V-dideoxyadenosine; Wort, wortmannin. (C) Effect of 15d-PGJ2 on

glutathione level in HepG2 cells. Cells were treated with different concentrations of 15d-PGJ2 for 3 h and assayed for GSH as

described in ‘‘Materials and methods’’. The values were expressed as the mean F S.E. of triplicate tests. *, p < 0.05 vs. the

control.
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15d-PGJ2 as a potent agonist of PPARg. To examine whether 15d-PGJ2 induced HO-1 expression

through activation of PPAR, cells were also treated with the other PPAR agonists, including WY-14643,

ciglitazone, BRL49653, and indomethacin. As shown in the Fig. 3A, 15d-PGJ2 strongly increased the

HO-1 expression, and WY-14643 and BRL49653 slightly induced the HO-1 expression. On the

contrary, ciglitazone and indomethacin had no effect on the HO-1 expression. To further examine the

possibility of PPARg involved in the induction of HO-1, cells were transfected with PPARg expression

plasmid and treated with 15d-PGJ2. Western blot showed that PPARg was increase about two to three-

fold in the cells with PPARg overexpression plasmid (Fig. 3B, lanes 2 and 4). However, no additional
Fig. 5. Effect of NAC and DTT on mRNA levels and promoter activity of HO-1 induced by 15d-PGJ2 in HepG2 cells. (A) Cells

were pretreated with NAC or DTT for 2 h, 10 AM 15d-PGJ2 was added for another 4 h, and HO-1 and HO-2 mRNA were

detected by RT-PCR. (B) Cells were transfected with the pGL2/hHO3.2-Luc reporter plasmid and the phRL-TK internal control

plasmid for 48 h, and 10 AM 15d-PGJ2 was added for another 9 h. Luciferase activity was measured as described in ‘‘Materials

and methods’’. The values are expressed as the mean F S.E. of triplicate tests. *, p < 0.05 vs. 15d-PGJ2 treatment.
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induction of HO-1 was found in the PPARg overexpression cells with 15d-PGJ2. These results

suggested that induction of HO-1 expression might mediate PPAR-independent pathway in HepG2

cells with 15d-PGJ2.

Thiol antioxidant and thiol-reducing agent attenuate 15d-PGJ2-induced HO-1 expression

There is evidence which indicates that cyclopentenone PGs, such as the J series of PGs, are potential

inducers of intracellular oxidative stress in human neuroblastoma cells (Kondo et al., 2001). To examine

whether 15d-PGJ2 induced HO-1 expression through acting as a pro-oxidant or as a signal transducer,

we treated cells with the antioxidants, vitamins C and E, with the xanthine oxidase inhibitor, allopurinol,

glutathione precursor-N-acetyl-L-cysteine (NAC), and adenylate cyclase inhibitor-2V,5V-dideoxyadeno-
sine, and with the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, with 15d-PGJ2. As shown

in Fig. 4A, 15d-PGJ2-induced HO-1 expression was significantly inhibited by NAC, whereas it was not

significantly inhibited by the other antioxidants or by the inhibitors of signal transduction, such as

vitamins C and E, allopurinol, 2V,5V-dideoxyadenosine, and wortmannin. In addition, dithiothreitol

(DTT), a reducing thiol agent, also exhibited inhibitory effects on HO-1 expression induced by 15d-

PGJ2 (Fig. 4B). Also to investigate whether 15d-PGJ2 could influence the cellular thiol-disulfide redox

status, we measured intracellular glutathione (GSH) levels. As shown in Fig. 4C, GSH levels were

significantly diminished by treatment with 10 and 20 AM 15d-PGJ2. To examine whether DTT and NAC

inhibited protein expression through transcriptional regulation, cells were pretreated with DTT or NAC

for 2 h, 15d-PGJ2 was added for 4 h, and the mRNA levels of HO-1 were detected by RT-PCR. As

shown in Fig. 5A, DTT and NAC significantly inhibited the mRNA levels of HO-1 induced by 15d-

PGJ2. In addition, DTT and NAC also significantly inhibited the promoter activity of HO-1 induced by

15d-PGJ2 (Fig. 5B).
Discussion

PGD2 is known to be sequentially metabolized to PGJ2, D
12-PGJ2, and 15d-PGJ2. A comparison of

the PG biosynthetic pathway with HO-1 inducer profiles reveals that induction of HO-1 might be

mediated mainly by the metabolites of PGD2, the most active of which is the terminal metabolite, 15d-

PGJ2 (Fig. 1A). However, 16,16-dimethyl prostaglandin D2 also markedly induced the expression of

HO-1 (Fig. 1B). These results indicate that induction of HO-1 pathway potency is not dependent on the

catabolism of PGD2.

The 5V-flanking region of the human HO-1 gene contains a number of DNA sequences of potential

regulatory elements, such as AP-1 site, AP-2 like site, NF-nB site, STATx site, c-Rel site, HNF-1 site,

HNF-4 site, HSE site, and GATA-X sites (Takahashi et al., 1999; Lavrovsky et al., 1994). In rat HO-1

promoter, the consensus E-box motif, CANNTG, seem to be essential for D12-PGJ2-induced the

expression of rat HO-1 (Koizumi et al., 1995). However, we found several E-box like sequences in

the 5V-flanking (� 3106 to + 186) of the human HO-1 gene. Further experiments are needed to

determine which E-box like sequences is essential for 15d-PGJ2-induced the expression of human HO-1

gene. Recently, another report indicated that the mouse HO-1 promoter contains a stress-response

element (StRE), which is required for induction of HO-1 gene by 15d-PGJ2 (Gong et al., 2002). We

performed the computer-assisted identification of putative StRE (set at a cutoff score of >90) by MOTIF



J.-D. Liu et al. / Life Sciences 74 (2004) 2451–2463 2461
(http://motif.genome.ad.jp) and TRANSFAC (http://transfac.gbf.de/TRANSFAC), and not found puta-

tive StRE in the 5V-flanking region (� 3106 to + 186) of human HO-1 gene. These results suggest that

StRE sequences might not be important to mediate the induction of HO-1 gene by 15d-PGJ2 in human.

In this study, we found that 15d-PGJ2 activated the MAP kinases, ERK and JNK, in Hep3B cells,

while dominant-negative components could not block the induction of HO-1 by 15d-PGJ2 (Fig. 2B, C).

Other studies have demonstrated that activation of MAP kinase mediates the induction of HO-1 by

arsenite or cadmium. Elbirt et al. (1998) found that the MAP kinases, ERK and p38, are involved in

the induction of HO-1 by arsenite. Another study indicated that the MAP kinase, p38, is involved in

the induction of HO-1 by cadmium (Alam et al., 2000). The results from this study showed that there

were clear differences between the activation pathways of 15d-PGJ2 and the other treatments tested

(cadmium and aresenite). However, we must mention that aresenite and cadmium are strong inducers

of intracellular oxidative stress (Stohs and Bagchi, 1995; Lynn et al., 2000). It is possible that induction

of HO-1 by cadmium and aresenite occurs through increased intracellular oxidative stress, and results

in changes in GSH levels as does 15d-PGJ2. We have shown that 15d-PGJ2-induced HO-1 expression

is significautly inhibited by the thiol antioxidant, NAC, and by the thiol reducing agent, DTT. In

contrast to NAC, non-thiol antioxidants such as vitamins C and E, and allopurinol were unable to

inhibit the induction of HO-1 by 15d-PGJ2. We also confirm the decrease in intracellular GSH levels

produced by 15d-PGJ2. A characteristic of cyclopentenone PGs is that they contain a, h-unsaturated
ketones, which are very susceptible to nucleophilic addition reactions with thiol, and are essential for

the actions of the PGs (Atsmon et al., 1990a,b). Therefore, 15d-PGJ2 is likely to induce HO-1

expression through oxidizing cellular thiols, GSH, and proteins. Upon treatment of 15d-PGJ2, a

decrease in the GSH level may facilitate conversion of protein thiol groups to disulphide bonds, and

the subsequent accumulation of malfolded polypeptides, which in turn induces HO-1 expression (Fig.

6). However, determining which proteins participate in this induction of HO-1 requires further

investigation.
Fig. 6. Two possible mechanisms for the activation of HO-1 protein by 15d-PGJ2. (i) 15d-PGJ2 may form thiol conjugates with

cysteine residue of proteins because of electrophilic carbons in their cyclopentenone ring (Atsmon et al., 1990a,b). Conjugation

with proteins (including transcription factors) may lead to modification of protein functions, ultimately inducing HO-1

expression. (ii) 15d-PGJ2 exerts a pro-oxidant effect, resulting in the conversion of a sulfhydryl group (-SH) into an oxidized

disulfide (-S-S-) in cellular proteins (including transcription factors). This may lead to accumulation of denatured proteins,

which in turn may activate HO-1.
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