Identification and Characterization of the Acidic pH Binding Sites for Growth Regulatory Ligands of Low Density Lipoprotein Receptor-related protein-1

黄彥華

Ling TY; Chen CL; Huang YH; Liu IH; Huang SS; Huang

JS

摘要.

The type V TGF- β receptor (T β R-V) plays an important role in growth inhibition by IGFBP-3 and TGF- β in responsive cells. Unexpectedly, T β R-V was recently found to be identical to the LRP-1/ α 2M receptor; this has disclosed previously unreported growth regulatory functions of LRP-1. Here we demonstrate that, in addition to expressing LRP-1, all cells examined exhibit low affinity but high density acidic pH binding sites for LRP-1 growth regulatory ligands (TGF- β 1, IGFBP-3, and α 2M*). These sites, like LRP-1, are sensitive to receptor-associated protein and calcium depletion but, unlike LRP-1, are also sensitive to chondroitin sulfate and heparin and capable of directly binding ligands, which do not bind to LRP-1. Annexin VI has been identified as a major membrane-associated protein capable of directly binding α 2M* at acidic pH. This is evidenced by: 1) structural and Western blot analyses of the protein purified from bovine liver plasma membranes by α 2M* affinity column chromatography at acidic pH, and 2) dot blot analysis of the interaction of annexin VI and 125I- α 2M*. Cell surface annexin VI is involved in 125I-TGF- β 1 and 125I- α 2M* binding to the acidic pH binding sites and 125I- α 2M* binding to LRP-1 at neutral pH as demonstrated by the sensitivity of cells to pretreatment with anti-annexin VI IgG. Cell surface annexin VI is also capable of mediating internalization and degradation of cell surface-bound 125I-TGF- β 1 and 125I- α 2M* at pH 6 and of forming ternary complexes with 125I- α 2M* and LRP-1 at neutral pH as demonstrated by co-immunoprecipitation. Trifluoperazine and fluphenazine, which inhibit ligand binding to the acidic pH binding sites, block degradation after internalization of cell surface-bound 125I-TGF- β 1 or 125I- α 2M*. These results suggest that cell surface annexin VI may function as an acidic pH binding site or receptor and may also function as a co-receptor with LRP-1 at neutral pH.