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Abstract

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase of the ErbB family that is
frequently overexpressed in non-small cell lung cancer (NSCLC), and has been identified as a novel
therapeutic target for lung cancer. The development of small molecule EGFR-tyrosine kinase inhibitors
(TKI) such as gefitinib and erlotinib has resulted in paradigm shift in the treatment of advanced NSCLC.
The impact of EGFR-TKI in the treatment of NSCLC is even greater in Asia–Pacific region because one of
the greatest clinical benefits of EGFR-TKI has been seen in patients of East Asian ethnicity. The discovery
of somatic mutations in EGFR-tyrosine kinase domain has so far answered some, but not all, of the questions
regarding the clinical response to EGFR-TKI in NSCLC. In addition, other molecular profiles such as KRAS
mutations have also been found to play an important role in EGFR targeted therapy. In this article, we
review EGFR targeted therapy in NSCLC with the focus on perspective from the Asia–Pacific region.

Key words: epidermal growth factor receptor, erlotinib, gefitinib, mutation, non-small cell lung carcinoma.

INTRODUCTION

Lung  cancer  has  been  the  most  common  cancer  in
the world since 1985. In 2002, 1.35 million of people
worldwide were diagnosed with this disease, and 1.18
million died from it, accounting for 17.6% of all cancer
death.1 It is by far the most common cancer in men, with
the highest rates in North America and Europe, fol-
lowed by Australia/New Zealand and East Asia. In East
Asia, the incidence of lung cancer is highest in China
(42.4 per 100 000), followed by Australia/New Zealand
(39.1 per 100 000) and Japan (38.1 per 100 000). Sim-
ilarly in Taiwan, the incidence of lung cancer, currently
secondary to liver cancer, has been rising in the past
10 years. In 2004, lung cancer is the second most com-
mon cause of cancer death in men and the most com-

mon in women. As the mass vaccination program for
hepatitis B (HBV), which has been in place since the
early 1980s, has significantly decreased the incidence of
HBV-related liver cancer, lung cancer is expected to
exceed liver cancer as the leading cause of cancer death
in the decades to come.2

The incidence and mortality of lung cancer are very
much influenced by past exposure of tobacco smoking.
Globally, an estimated 85% of lung cancer in men, and
47% of lung cancer in women is related to tobacco
smoking. However, in the Asia–Pacific region, the
impact of smoking on lung cancer, especially for
women, has been less conclusive. For example, in Tai-
wan, only 9% of women with lung cancer are smokers,
in contrast to more than 70% in Western countries.3 In
terms of the histologic types, adenocarcinoma is seen in
42.1% of lung cancer in men and 73.4% in women.
Several factors that might contribute to the increase of
lung adenocarcinoma in Asian women include cooking
styles and the presence of carcinogenes in cooking oil
fumes, the NAT2 fast acetylator genotype and cyto-
chrome P4501A1 activity.4,5 How these factors play a
role in the lung carcinogenesis might need to be further
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defined, but obviously the pathogenesis of lung cancer
in these populations could be different from what has
been described in Western countries. Therefore, treat-
ment strategies will need to be tailored to the unique
pathogenesis in Asia–Pacific region.

In the past, the treatment for advanced lung cancer
has been disappointing.6 However, with the introduc-
tion of newer and less toxic agents and improvement of
supportive care, treatment with platinum agents in con-
junction with either taxane agents, gemcitabine, or
vinorelbin has become the standard chemotherapy for
advanced lung cancer, reaching an overall survival to
approximately 9–10 months.7 Since the cancer growth
requires angiogenesis, strategies targeting molecules
critical for angiogenesis have also been devised to
improve lung cancer treatment. One of the agents is
bevacizumab, a monoclonal antibody against vascular
endothelial growth factor, which is crucial for angiogen-
esis in cancer. Results from Eastern Clinical Oncology
Group (Trial E4599) have shown that the inclusion of
bevacizumab to platinum-based chemotherapy has sig-
nificantly improved the overall survival of advanced
lung cancer to more than one year.8,9 At the same time,
the identification of epidermal growth factor receptor
(EGFR), a receptor tyrosine kinase on the lung cancer
biology also prompts the development of another class
of agents, so-called tyrosine kinase inhibitors (TKI).10

Because EGFR is overexpressed in 40–80% of NSCLC,
the enthusiasm of using TKI to inhibit EGFR in lung
cancer is inspired by the successful use of imatinib mesy-
late, a TKI against BCR/ABL, the hallmark of chronic
myelogenous leukemia (CML). Imatinib has revolution-
ized the treatment for CML because more than 90% of
BCR/ABL(+) CML respond to this agent without signif-
icant toxcities.11–13

TARGETING EGFR IN LUNG CANCER

Many lung cancers (40–80%), mainly NSCLC, overex-
press EGFR, making it an ideal target for novel thera-
pies. Therefore, in the effort to develop more specific
and effective treatment, EGFR has been identified as a
potential target for lung cancer. The EGFR gene is
located in chromosome 7p. EGFR is a 170-kDa receptor
tyrosine kinase that dimerizes and then phosphorylates
tyrosine residues when specific ligands, such as epider-
mal growth factor (EGF), are engaged.14 Phosphorylated
tyrosines then serve as binding sites for multiple down-
stream signal molecules critical for cell survival (e.g.
PI3K/Akt) and proliferation (e.g. ras/MAPK) (Fig. 1).
The overexpression of EGFR in lung cancer is due to (i)

overexpression of EGF through epigenetic mechanisms;
(ii) amplification of EGFR; or (iii) constitutive activa-
tion of EGFR by mutations.15

USE OF EGFR INHIBITORS IN LUNG 
CANCER

Since the early 1990s, investigators studying EGFR in
carcinogenesis have been trying to identify compounds
that can inhibit its catalytic activity. They found an
anilinoquinazoline compound that inhibited tyrosine
kinase activity. However, in vivo studies using this com-
pound showed that it was rapidly metabolized and
required constant dosing, which would be inconvenient
in the clinic. Later, a modified compound gefitinib (pre-
viously called ZD1839; AstraZeneca) was developed
with improved stability and better efficacy, and showed
high and sustained blood levels in mice over a 24- h
period.16 Gefitinib in a concentration of 5.7 µmol/L after
an oral dose of 200 mg/kg in mice competitively inhibits
the binding of ATP to EGFR, blocking EGFR’s tyrosine
kinase activity.16 The selectivity of gefitinib has been
demonstrated using different tyrosine kinases. The con-
centration required to inhibit the vascular growth factor
receptor-KDR or Flt1 is 100 times higher than that
needed to inhibit EGFR.17 Gefitinib does not inhibit
other types of kinases, such as serine/threonine kinases,
including Raf, MAPK, and MEK1.

Gefitinib has shown great promise in lung cancer in
animal studies. In human xenograft tumor models in
nude mice, gefitinib alone was given 5 days per week for

Figure 1 Schematic diagram of epidermal growth factor
receptor signaling pathway
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2 successive weeks. At doses of 100 or 150 mg/kg, gefi-
tinib can induce partial regressions of xenograft lung
cancers.18 When gefitinib was coadministered with cyto-
toxic chemotherapy agents or radiotherapy, additive or
even synergistic antitumor activity was achieved in
xenograft lung tumors in nude mice.19,20 After the prom-
ising activity of gefitinib in NSCLC was seen in phase I
studies,21–23 two randomized, multicenter global and US-
based phase II clinical trials were conducted to compare
daily oral doses of 250 mg and 500 mg gefitinib as
second- or third-line monotherapy in patients with
advanced NSCLC.24,25 The overall response rate in the
global Iressa Dose Evaluation in Advanced Lung Cancer
(IDEAL)-1 and in the US-based IDEAL-2 was 18% and
10%, respectively. However, the response rate was 28%
in Japanese patients in IDEAL-1, significantly higher
than 10% observed in non-Japanese patients in IDEAL-
1 and 2.26

Several preclinical reports have shown that EGFR-
TKI can enhance the antitumor activity of chemother-
apy, especially when gefitinib was combined with cispl-
atin, carboplatin, paclitaxel, and docetaxel- the agents
commonly used in lung cancer.27 These results, along
with the good tolerability of profile by EGFR-TKI, pro-
vide a rationale for the two subsequent randomized
phase III trials for previously untreated patients with
advanced NSCLC to receive standard platinum-based
chemotherapy, with or without the addition of gefitinib
at two doses.28,29 Patients were randomized to receive
either gefitinib (250 mg/day or 500 mg/day) or placebo
in combination with cisplatin/gemcitabine (INTACT 1,
n = 1093) or carboplatin/paclitaxel (INTACT 2, n =
1037). Disappointingly, both studies failed to show any
differences in response rate, time to progression (TTP),
or 1-year or overall survival when gefitinib was added.
Even though gefitinib was unable to provide significant
survival benefit, it was approved in Japan and South
Korea in July 2002 for both second- and third-line ther-
apy, and the United States in May 2003 for third-line
therapy in advanced NSCLC. Approvals were based on
data from the IDEAL 1 and 2 studies, which showed
approximately 50% of patients in the IDEAL trials
achieved clinical benefit with gefitinib, often associated
with symptom relief.24,25 Thereafter, gefitinib was also
approved in many other countries such as Australia,
New Zealand, Singapore, and Taiwan. But the use of
gefitinib does not come without a price. Although stud-
ies in Japanese patients showed higher response rates,
they also revealed fatal pulmonary complications.30

Even so, lung cancer patients, being desperate for a cure,
are eager to take on a chance that this novel agent might

cure them. Subsequently, a large phase III randomized,
placebo-controlled study (ISEL, n = 1692) was initiated
to evaluate the effect on survival of gefitinib as second-
or third-line treatment for patients with locally
advanced or metastatic NSCLC.31 Gefitinib failed to
prolong survival in the overall population of patients
and those with adenocarcinoma. However, in pre-
planned subgroup analyses, gefitinib significantly pro-
longed survival in the never-smokers and patients of
Asian origin subgroups.

Erlotinib (Tarceva, previously called OSI774; OSI
Pharmaceuticals), another EGFR-TKI, was approved by
the US Food and Drug Administration in November
2004 for use in lung cancer. Erlotinib, which has equiv-
alent efficacy to gefitinib in animal studies, is showing
results similar to gefitinib. In athymic nude mice
xenograft models, erlotinib has antitumor activity both
as monotherapy and in combination with chemothera-
pies.32,33 In addition, erlotinib also enhances radiation
response in xenograft models resulting in profound
tumor growth inhibition.32 In two phase II studies of
erlotinib, patient enrollment required EGFR-expressing
NSCLC or NSCLC with bronchioloalveolar carcinoma
(BAC) histology, respectively.34,35 The response rate was
higher when erlotinib was used as a first-line or second-
line therapy in NSCLC with BAC subtype.35 Erlotinib
has also been studied in two large phase III front-line
clinical trials in combination with chemotherapy. These
two studies randomly assigned patients with good per-
formance status and previously untreated advanced
(stage IIIB/IV) NSCLC to erlotinib 150 mg/d or placebo
combined with up to a maximum of 6 cycles of carbo-
platin/paclitaxel (the TRIBUTE study; n = 1079) or cis-
platin/gemcitabine (TALENT; n = 1172) after which
patients continued on erlotinib until disease progres-
sion.36,37 The addition of erlotinib to chemotherapy, like
what has been found in gefitinib study, did not improve
response rate, time to progression, or survival. It is
noteworthy that in these two phase III studies the
patients enrolled were not selected based on known
prognostic factors especially EGFR expression or BAC
histologic subtype used in phase II studies. In addition,
after retrospective subset analysis of the TRIBUTE
study, mutations in EGFR and in KRAS have been found
to have important prognostic impact in advanced
NSCLC patients treated with chemotherapy with or
without erlotinib.38 The lack of patient selection may
have adversely affected the results of these phase III
studies. However, in a phase III randomized, placebo-
controlled study involving 731 patients, erlotinib as a
single-agent therapy can prolong survival in NSCLC
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patients who failed first- or second-line chemotherapy.39

This result will need to be further validated by other
studies.

Despite of the promising results in preclinical and
early phase studies, anti-EGFR therapy in lung cancer
is intriguing in two aspects – the antitumor activity of
EGFR inhibitors does not appear to correlate with
EGFR expression, and addition of inhibitors to chemo-
therapy failed to achieve significant additional survival
benefit in large randomized controlled trials. This sug-
gests that cancer cells might have evolved multiple path-
ways for cell proliferation and survival. Simply blocking
EGFR signaling is not enough to halt the cancer. Other
possible explanations for lack of additional benefit
include the possibility that concurrent administration of
chemotherapy and EGFR-TKI are antagonistic in at
least a subset of patients treated. Preclinical studies have
showed that EGFR-TKI result primarily in a G1 cell
cycle arrest in cancer cell lines with wild type EGFR,
versus induction of apoptosis in cell lines with mutant
EGFR.40 In vitro and in vivo combination studies have
further shown that G1 arrest resulting from pretreat-
ment with EGFR-TKI blocks subsequent effects of
chemotherapy, and that continuous concurrent ad-
ministration of the combination is less effective than
intermittent or sequential pulse therapy.41,42 Clinical
studies using alternative ways of combining chemother-
apeutic agents with EGFR-TKI in terms of sequences
and settings are ongoing.

Currently, there are several small molecule EGFR-TKI
under  clinical  development.  These  include  irrever-
sible EGFR  inhibitors  (e.g.  EKB-569,  HKI-272),
dual  EGF/HER2  receptor  inhibitors  (e.g.  lapatinib
and  BMS-599626), pan-ErbB receptor inhibitors (e.g.
CI-1033), and dual EGF/VEGF receptor inhibitors (e.g.
ZD6474).43–46 Through the inhibition of EGFR and
other HER receptors or other TK-receptor families,
greater antitumor activity may be achieved and promis-
ing clinical result has been reported.44

IDENTIFICATION OF EGFR MUTATIONS 
IN LUNG CANCER

Although the clinical trials on gefitinib failed to demon-
strate any survival advantage, there are sporadic reports
of dramatic response on certain patients. The exact rea-
sons why those patients respond so well remained elu-
sive until the reports in mid-2004 that two groups, using
different approaches, first identified the presence of
somatic EGFR mutations in NSCLC might correlate
with the response to gefitinib.47,48 In the studies by Lynch

et al., they hypothesized that patients with NSCLC who
had striking responses to gefitinib had somatic muta-
tions in the EGFR gene that would indicate the essential
role of the EGFR signaling pathway in the tumor. They
first looked for rearrangements within the extracellular
domain of EGFR that are characteristic of gliomas, and
none were detected. They then sequenced the entire
coding region of EGFR gene in primary lung tumors
from patients with a response to gefitinib, from those
without a response, and from 25 patients who had never
received gefitinib. In another study, Paez et al. initially
amplified and sequenced the exons encoding the activa-
tion loops of 47 of the 58 human receptor tyrosine
kinase genes from genomic DNA from a subset of 58
NSCLC samples. Only three of the lung adenocarcino-
mas showed the same heterozygous somatic missense
mutations in EGFR. Subsequently, they amplified and
sequenced exons 2 through 25 of EGFR in 119 primary
NSCLC specimens from patients who had never
received gefitinib. Both groups each identified two
classes of somatic mutations within the EGFR tyrosine
kinase domain of their NSCLC specimens that correlate
with clinical response to gefitinib. The first class
included missense mutations with amino acid substitu-
tions in exon 18 (the p-loop of the kinase domain) or
in exon 21 (the activation loop of the kinase domain).
The second class involved in-frame deletions within
exon 19 that change the structure and spatial orienta-
tion of the catalytically important αC-helix of the kinase
domain. In vitro functional assays in transient trans-
fected Cos-7 cells and lung cancer cell lines showed that
these mutant EGFR proteins have enhanced EGF-depen-
dent activation and markedly increased sensitivity to
gefitinib inhibition.47,48

Several subsequent NSCLC studies have identified
more than 29 EGFR mutations among different ethnic
groups.49–58 These mutations are thought to be somatic
in origin and most of them are clustered in exon 18–21.
They consist of three very different types: in-frame dele-
tions, insertion, and missense point mutations, and are
often located in key structural positions in EGFR includ-
ing the P-loop, the αC-helix, and the A-loop. In-frame
deletions in exon 19, accounting for 44% of all muta-
tions, are the most common type of mutations, followed
by the missense mutations, a single nucleotide substitu-
tion L858R, at exon 21 (41% of all mutations), in-
frame insertion at exon 21 (5% of all mutations) and
point mutations at exon 18 (4% of all mutations). It is
noteworthy that many exon 19 deletions lack amino
acids LREA (leucine, arginine, glutamic acid, and ala-
nine) at codons 747 through 750.47,49 Interestingly, de
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novo double EGFR mutations were also found in a few
of patients.49,50,58 Studies on the two most common types
of mutations have shown that these mutations preferen-
tially activates antiapoptotic pathways (PI3K/Akt and
Jak/Stat), but have less effect on cellular proliferation.59

How lung cancer cells acquire these mutations is still
unclear, but it appears to be an early event during car-
cinogenesis because the presence of mutations does not
correlate with disease stage. If this is true, these muta-
tions might arise at the levels of lung progenitor or even
stem cells in the airways, making these lung cancer cells
ideal targets for EGFR-TKI therapy.

In the initial studies, patients with a dramatic
response to gefitinib showed similar profiles: women,
patients with BAC or adenocarcinoma, and non-
smokers.24,25 Comparing the mutations rates among
different ethnic groups, it is interesting to note that
patients with East Asian ethnic background have signif-
icantly higher rates of mutations than their Western
counterparts (Table 1). In Western countries, the rates
of mutations are at most 14% in USA, 7% in Austra-
lia, and 4.5% in Italy; while in Asian countries, the
mutation rates are significantly higher and could be as
higher as 49% in adenocarcinoma. In our series in
Taiwan,58 high frequency of EGFR mutations are found
in lung adenocarcinomas, and correlated significantly
with female sex, BAC histologic subtype, and non-
smokers (Table 2). A similar trend is also observed in
Japanese studies. In China, there is female and adeno-
carcinoma histology preponderance in lung cancer, but
there is no significant difference in EGFR mutations
between smokers and non-smokers. The profile of
patients with EGFR mutations in Korea is similar to
that in China. Whether these differences in characteriz-
ing mutation-positive NSCLC are caused by variations
in sampling, race, or other unidentified factors requires
further investigation.

SIGNIFICANCE OF EGFR MUTATIONS 
IN LUNG CANCER PATIENTS IN THE 
ASIA–PACIFIC REGION

The high mutation rates in the Asia–Pacific region raise
several interesting and critical issues. For cancer biology,
the high mutation rates in Asian patients imply a differ-
ent biological process during cancer development. The
likelihood that EGFR mutations arise at the level of
pulmonary epithelial progenitors and the concept of
targeting cancer stem cells, which have also been iden-
tified in lung cancer, suggest that a different strategy
might be needed for treating these patients.60 A recent

finding that lung cancer with BAC subtype responds
more favorably to conventional therapy than with other
pathological types suggests that this group of patient
will need a separate treatment strategy.61 Currently,
treatment of lung cancer is based on the pathology
(small cells vs non-small cells), stage of the disease, age,
and performance status of patients, but not on tumor
biology. Studies on lymphoma, leukemia, breast cancer
and gastrointestinal stromal tumors have shown that
tumor biology greatly affects the treatment outcome. As
with breast cancer, the expression pattern of selected
genes has been shown to predict the likelihood of distant
recurrence and the survival.62 Thus, with the new infor-
mation about EGFR mutations, particularly in the Asia–
Pacific region, it may be time to correlate tumor biology
with the clinical behavior of lung cancer, to identify new
risk factors, and to tailor treatment strategies according
to changes at the molecular levels.

The latest information about EGFR mutations
appears to be leading us to this direction.63 Patients with
EGFR mutations are more responsive to EGFR-TKI (25
vs 9.1% in patients without mutations), and those with
deletion at exon 19 appear to respond more favorably
than those with exon 21 point mutation. Most impor-
tant of all, with gefitinib therapy, patients with EGFR
mutations have significantly longer survival than those
without.52,54 With the relationship between BAC and
EGFR mutations, it requires further studies to under-
stand whether patients with EGFR mutations do survive
longer  by  EGFR  inhibitors  or  if  they  are  inherently
more responsive to therapy, regardless whether it is by
EGFR inhibitors or by conventional chemotherapy, and
whether a combination of EGFR inhibitors and chemo-
therapy could provide a better control of the disease.
Just as small-cell lung cancer has been separated from
other types of lung cancer and requires different treat-
ment strategies, it might be time to substratify patients
with non-small cell lung cancer, not only by conven-
tional classification, but also by the new genetic
information.

If the latest information on the treatment outcomes
of EGFR inhibitors is to be considered in the future,
should we routinely screen for EGFR mutations in Asia–
Pacific region, and how should these mutations be
screened? Most investigators currently rely on direct
sequencing to detect mutations, and real-time PCR to
quantify gene amplifications; these methodologies are
technically more demanding than the conventional
pathological  examination  and  can  only  be  performed
in selected centers. Furthermore, improvement of the
detection method will be necessary before it is widely
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available to clinical practice. As about 95% of muta-
tions are clustered in four different exons, it is likely to
develop rapid and cost-effective methods to screen out
mutations before treatment.64–66

CLONAL SELECTION AND DRUG 
RESISTANCE: A DESTINED SCENARIO?

Despite the excitement caused by the dramatic response
in patients with EGFR mutations, EGFR-TKI do not
provide a cure. Most patients with a good initial
response eventually relapse. Studies on CML have dem-
onstrated that cancer cells, which are initially sensitive
to imatinib develop resistance by acquiring new muta-
tions or gene amplification.67 A similar scenario has also
been found in gefitinib-resistant lung cancer, in which a
second mutation at T790M suppresses inhibition by
EGFR inhibitor.68,69 Although the T790M mutation con-
tributes to the resistance in some cases, the underlying
mechanisms for resistance in cases lacking the second
mutations remain unclear. A recent report using gene
expression profiling has identified epithelial membrane
protein-1 (EMP-1), as a potential marker for the resis-
tance of EGFR inhibitor.70 It is likely that the up-regu-
lation of EMP-1 is caused by drug selection, and that
the expression of EMP-1 provides a survival advantage
in de novo resistant cases. As EMP-1 is a junctional
protein between intracellular microfilaments, and extra-
cellular matrix, it also highlights the importance of
tumor microenvironment on drug resistance. Another
molecular mechanism that correlates with primary resis-
tance of lung adenocarcinomas to EGFR-TKI is KRAS

mutations.71 Studies on lung cancer resistant to EGFR-
TKI have shown that mutations in EGFR and KRAS
appear to be mutually exclusive. As RAS is also associ-
ated with cell adhesion molecules and intracellular
actins, its mechanisms with regard to the resistance to
EGFR-TKI might also be related to interaction with
tumor microenvironment as well.

How can we overcome the resistance to EGFR inhib-
itors? Two studies have tried to identify novel com-
pounds to block the EGFR signaling in lung cancer
harboring T790M mutations.46,72 Whether these new
compounds could be effective for those resistant lung
cancers without T790M mutation is still unclear.

CONCLUSIONS

The story of EGFR mutations so far answers some, but
not all, of the questions in lung cancer. In fact, it creates
more questions than answers, especially in the Asia–
Pacific region. The question of why patients in this
region have higher rates of EGFR mutation needs to be
further elucidated, both because of its therapeutic rele-
vant to EGFR-TKI and its potentially critical role in the
carcinogenesis of lung cancer. Although EGFR-TKI
have been shown to increase survival in advanced
NSCLC, the magnitude of benefits is different in dis-
tinct patient populations. The greatest clinical benefits
of  EGFR-TKI  have  been  seen  in  female  patients  of
East Asia ethnicity, who have never smoked and have
adenocarcinoma including adenocarcinoma with BAC
features. Thus, it is important that pathologists can
routinely report the presence or absence of BAC fea-

Table 2 The relationship of EGFR mutations with BAC subtype

Country
No. of

adenocarcinoma
No. of
ADC

No. of EGFR
mutations

(%)
No. of
PBAC

No. of EGFR
mutations

(%)
No. of
AWBF

No. of EGFR
mutations

(%) p*

Taiwan (Hsieh),58 35 14 3 (21) 13 7 (53) 21 14 (66)* 0.009
Taiwan (Huang),50 69 66 38 (57) 3 0 (0) NA NA NA
Korea (Han),52 65 55 11 (20) 3 1 (33) 10 3 (30)* 0.44
Japan (Kosaka),49 224 219 107 (48) 5 3 (60) NA NA NA
Italy (Marchetti),51 375 289 17 (6) 86 22 (26)* NA NA 0.000002
United States

(Shigematsu),56 
97 80 11 (13) 7 0 (0) 17 4 (27) NA

United States
(Lynch),47 

22 7 0 (0) NA NA 15 2 (13) NA

ADC, adenocarcinoma other than bronchioloalveolar carcinoma; AWBF, adenocarcinoma with any bronchiolealveolar features including pure
bronchioloalveolar carcinomas; BAC, bronchioloalveolar carcinoma; NA, not assessed; PBAC, pure bronchioloalveolar carcinoma. *Compare with
adenocarcinoma other than bronchioloalveolar carcinoma.
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tures in cases of adenocarcinoma. In addition, NSCLC
with unusual clinical manifestations such as those
presented with brain metastases, malignant pericardial
effusions, or widespread metastases, may also benefit
from EGFR-TKI therapy (clinical observations). It is
noteworthy that all of these clinical features are associ-
ated with EGFR mutations in NSCLC, and EGFR
mutation testing in these selected cases may provide
important information related to EGFR-TKI therapy. It
is also important to establish a standardization of
EGFR mutation testing methodology among all the lab-
oratories involved. While EGFR targeted therapy has
shifted the paradigm of treatment in lung cancer, a
meta-analysis of current studies is still necessary to fur-
ther clarify its roles. In addition, the development of a
decision tree is also needed to indicate criteria under
which EGFR-TKI, including its front-line use, is indi-
cated. All of these advancements can only be achieved
through concerted efforts among basic researchers, clin-
ical investigators and epidemiologists throughout the
Asia–Pacific region.
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